RESEARCH BRIEF

Federated Deep Learning Enables Cancer
Subtyping by Proteomics

Zhaoxiang Cai', Emma L. Boys!, Zainab Noor?, Adel T. Aref!, Dylan Xavier?, Natasha Lucas?,

Steven G. Williams?, Jennifer M.S. Koh?, Rebecca C. Poulos?, Yangxiu Wul, Michael Dausmann?,

Karen L. MacKenzie?, Adriana Aguilar-Mahecha?, Carolina Armengol3#, Maria M. Barranco34, Mark Basik?,
Elise D. Bowman®, Roderick Clifton-Bligh®738, Elizabeth A. Connolly!, Wendy A. Cooper®219, Bhavik Dalal®,
Anna DeFazio!l1213, Martin Filipits'41>16, Peter J. Flynn!7, J. Dinny Graham!!.8 Jacob George® !9,
Anthony J. Gill®7:20, Michael Gnant!>16, Rosemary Habib!1:21.22, Curtis C. Harris®, Kate Harvey?3,

Lisa G. Horvath®23.24, Christopher Jackson?>, Maija R.J. Kohonen-Corish?32627.28 Elgene Lim?3.2°,

Jia (Jenny) Liul?32%, Georgina V. Long®3%93132 Reginald V. Lord33, Graham J. Mann113034,

Geoffrey W. McCaughan®3>3¢, Lucy Morgan® 17 , Leigh Murphy??, Sumanth Nagabushan3?, Adnan Nagrial®21.22,
Jordi Navinés3?, Benedict J. Panlzza25 Jaswinder S. Samra®“, Richard A. Scolyer®93031, John Souglakos*!,
Alexander Swarbrick?3, David Thomas#2, Rosemary L. Balleinel%, Peter G. Hains?, Phillip J. R blnson1
Qing Zhong!, and Roger R. Reddel!

ABSTRACT Artificial intelligence applications in biomedicine face major challenges from

data privacy requirements. To address this issue for clinically annotated tissue
proteomic data, we developed a federated deep learning approach (ProCanFDL), training local models
on simulated sites containing data from a pan-cancer cohort (n = 1,260) and 29 cohorts held
behind private firewalls (n=6,265), representing 19,930 replicate data-independent acquisition mass
spectrometry runs. Local parameter updates were aggregated to build the global model, achieving
a 43% performance gain on the hold-out test set (n = 625) in 14 cancer subtyping tasks com-
pared with local models and matching centralized model performance. The approach’s generalizabil-
ity was demonstrated by retraining the global model with data from two external, data-independent
acquisition mass spectrometry cohorts (n = 55) and eight acquired by tandem mass tag proteomics
(n=832). ProCanFDL presents a solution for internationally collaborative machine learning initiatives
using proteomic data, for example, for discovering predictive biomarkers or treatment targets while
maintaining data privacy.

SIGNIFICANCE: A federated deep learning approach applied to human proteomic data, acquired
using two distinct proteomic technologies from 40 tumor cohorts across eight countries, enabled
accurate cancer histopathologic subtyping while preserving data privacy. This approach will enable
the privacy-compliant development of large-scale proteomic artificial intelligence models, including
foundation models, across institutions globally.
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INTRODUCTION

Artificial intelligence (AI) applications, driven by a wealth
of online data, have gained traction as tools to enhance
efficiency, convenience, and innovation across multiple sec-
tors. The use of these applications in commercial products,
ranging from personalized recommendations in streaming
services to generative Al tools such as ChatGPT, has led to
the widespread uptake of these technologies and ongoing
discussions about their appropriate use and regulation (1).
Within the biomedical domain, numerous applications of Al
are undergoing rapid development, including diagnostic pre-
diction tools, interpretation of radiological and histopatho-
logic images, and methods of drug discovery (2). Although
such tools offer promise, with efficiency gains and the poten-
tial for novel insights beyond those that can be achieved by
traditional research studies, to date, large-scale AI modeling
in most biomedical fields continues to be hindered by several
substantive challenges (3).

These challenges include the privacy of data, especially
personal clinical records, data ownership and governance, hu-
man research ethics, and intellectual property concerns (4). In
transnational studies, compliance with laws and regulations
that impose stringent standards on the collection, storage,
sharing, and use of biomedical data may be complicated by
differing requirements in the relevant jurisdictions (S, 6).
Consequently, data sharing among collaborators within
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international consortia can be infeasible, hindering the as-
sembly of heterogeneous and globally representative large-scale
datasets and presenting a significant barrier to the develop-
ment of practical and relevant Al tools in the biomedical field.
This contrasts sharply with commercial Al products based on
ubiquitous information regarded as nonsensitive. However,
for biomedical applications such as cancer research, there is
an urgent need to utilize all sources of good-quality data for
purposes that include expediting the discovery of drug tar-
gets and predictive biomarkers and avoiding duplication of
resources and therefore wastage due to data siloing and inac-
cessibility. To address these challenges, innovative solutions
that balance the need for data accessibility and protection of
clinical data are crucial.

Federated learning (FL) offers a promising solution to some
of these challenges (7). As a distributed learning framework,
FL permits the local training of sensitive data at participating
sites, with only the local model updates being shared with a
central server to create a global model. This approach ensures
that local data remain protected and securely stored behind
firewalls. The ability to protect confidential data and combine
diverse and geographically distinct datasets has outstanding
potential for the development of large-scale generative Al
tools with utility in both biomedical research and healthcare
settings (8-10).

Although genomic and transcriptomic studies have greatly
advanced our understanding of cancer, proteomic data will
play a crucial role in answering many unresolved questions
about the molecular mechanisms of cancer (11-13) and in
identifying predictive markers (13). However, as the scale of
human proteomics research increases, so do the challenges
related to data privacy. FL provides a promising solution to
address this but so far has been applied only to nonhuman
proteomic data (arXiv 2407.15220). A potential high-impact
application of FL in proteomics would be to develop a feder-
ated global model for international proteomic consortia, as
will be attempted by n-Hub (the proteomic navigator of the
human body; ref. 14).

This study addresses these gaps by developing a feder-
ated deep learning (FDL)-based framework, ProCanFDL,
for the analysis of proteomic data. The dataset, referred to
here for brevity (and to distinguish it from external data-
sets) as the ProCan Compendium, includes 7,525 human
biospecimens from 30 cohorts that were preserved and
stored either by freezing or formalin fixation and paraffin
embedding in pathology laboratories in multiple countries.
There were sufficient samples to train the FDL proteomic
model to recognize 14 cancer histopathologic subtypes; its
accuracy, tested on a hold-out test set, consistently outper-
formed individual local models and was on par with the
centralized model. The robustness of ProCanFDL was fur-
ther validated using 10 external proteomic datasets, eight
of which were generated by a different mass spectrometry
(MS) technology, covering two additional cancer subtypes,
to train a global model that can accurately recognize 16
histopathologic subtypes. These findings highlight the
potential of FDL to advance global clinical proteomics re-
search by enabling secure, integrative data analysis across
institutions and jurisdictions.
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RESULTS
ProCan Compendium and Landscape Analysis

We first compiled the ProCan Compendium, quantifying
proteomes from 7,525 tissue samples, including 5,982 tu-
mors, 1,512 tumor-adjacent normal samples, and 30 benign
samples from 4,954 individual patients (Supplementary
Table S1). The data were generated in collaborative research
projects involving 20 research groups across seven countries
(Fig. 1A) who provided biospecimens, stored either fresh fro-
zen (FF) or formalin-fixed and paraffin-embedded (FFPE),
and the associated clinical data. Utilizing a high-throughput
workflow with seven mass spectrometers, 19,930 data-
independent acquisition mass spectrometry (DIA-MS) runs
were used to obtain replicate proteomic data from the 7,525
samples (11, 15-17). Raw DIA-MS data were processed and
normalized using DIA-NN with a DIA-NN-generated spec-
tral library, quantifying a total of 9,102 proteins. The num-
ber of proteins quantified per sample, grouped by tissue of
origin, cancer type, and cancer subtype, is presented in Sup-
plementary Fig. SIA-S1C. These samples encompassed 31
tissues of origin, 29 cancer histopathology types, and more
than 65 cancer subtypes, distributed across 30 cohorts (Fig. 1B
and C; “Methods”). High correlations between replicates of
individual samples were observed, with a sample-wise me-
dian Pearson’s correlation coefficient (Pearson’s 7) of 0.96 and
moderate correlations between samples of the same cancer
and tissue of origin (0.84 and 0.81, respectively). Correla-
tions between unmatched samples from the same instrument
were equivalent to those of random sample pairings (median
Pearson’s r = 0.75), indicating that there were no instrument-
specific batch effects (Fig. 1D).

In the ProCan Compendium, cohort 1 serves as the base-
line pan-cancer cohort and its raw data, and the correspond-
ing spectral library are made publicly available alongside
this study as a resource for researchers in the field of cancer
proteomics (“Data Availability”). This cohort was acquired
from the Victorian Cancer Biobank, the Gynaecological
Oncology Biobank (GynBiobank) at Westmead Hospital, and
the Children’s Medical Research Institute Legacy sample set
and consists of 766 tumor samples from 638 patients. Sim-
ilarly to the ProCan Compendium overall, high correlations
were observed between replicates of individual samples across
all cancer types in cohort 1 (Supplementary Fig. S2A). Protein
intensities were visualized in tumor samples using Uniform
Manifold Approximation and Projection for Dimension Re-
duction (UMAP), revealing distinct clusters for several cancer
types, including lymphoma and melanoma, with biologically
related cancer types, such as neuroblastoma and ganglioneu-
roblastoma, forming neighboring clusters, indicating the
robustness of this pan-cancer dataset (Fig. 1E). For broad
cancer types, such as adenocarcinoma and carcinoma, the
UMAP visualization of their subtypes provides a detailed
representation of the subtypes and clearer insight into the
diversity within the cancer types (Fig. 1F). Analysis of cancer
subtype-enriched proteins showed that cohort 1 exhibited a
pattern consistent with our previous study in cancer cell lines
(13), with neuroblastoma showing the highest number of en-
riched proteins and quantification rate and lymphoma show-
ing the second highest (Supplementary Fig. S2B and S2C).

Cohorts 2 to 30 comprise 29 single-cancer cohorts, with a
total of 5,217 tumor samples from 4,316 patients encom-
passing 42 cancer subtypes, which will be included in sep-
arate publications.

ProCanFDL Overview

The traditional method of machine learning is based
on local learning (Fig. 2A), in which individual research
groups independently train models on the data available to
them. This approach preserves jurisdictional data control
burt limits the ability to generalize findings across diverse
datasets. Centralized learning (Fig. 2B) improves predic-
tive performance by aggregating data from multiple sites
into a centralized model; however, it necessitates sharing
sensitive data, which raises subsequent privacy concerns.
FL (Fig. 2C) represents an evolution of these methodolo-
gies by enabling the training of a global model across de-
centralized data sources, updating both local and global
model weights without the need to transfer raw data, thus
preserving data privacy. FDL specifically refers to the im-
plementation of deep learning techniques within this dis-
tributed setup.

The ProCanFDL framework employs a four-step FDL ap-
proach while maintaining data privacy, enabling collaborative
research in an international consortium (Fig. 2C; “Methods”).
In step 1 (initialization and local training), a global model is
initialized with random weights and distributed to all par-
ticipating local sites. Then, a local instance of a deep learn-
ing model is trained on its private proteomic data at each
participating site. These models are trained independently,
without sharing raw data across sites. In step 2 (global
model aggregation), the trained model parameters are se-
curely transferred to a central server, which aggregates these
updates using a federated averaging algorithm. This process
creates a global model reflecting the pooled knowledge from
all local datasets, without the need for the server to access
raw data. In step 3 (global model update), the newly aggre-
gated global model is distributed back to all participating
sites, where it serves as the starting point for the next round
of local training. Finally, in step 4 (iteration and conver-
gence), this process (steps 1-3) is repeated iteratively, with
each cycle refining the global model until it converges. The
resulting model becomes increasingly accurate and repre-
sentative of the combined datasets, encapsulating the col-
lective knowledge.

ProCanFDL on ProCan Compendium

To evaluate and benchmark ProCanFDL, we used pro-
teomic data from the ProCan Compendium as input, train-
ing local, centralized, and ProCanFDL global models to
assign each sample to its correct cancer subtype. As a proof
of concept, we focused on 14 cancer subtypes, for each of
which at least five samples were available in cohort 1 and
at least 20 samples across cohorts 2 to 30 (Supplementary
Fig. S3A and S3B). Additionally, only samples with replicate
correlations greater than 0.9 were included in the analysis
to ensure data quality and consistency. This filtering step
resulted in a final subset of 4,558 samples, which was used
in the subsequent analyses. No cohort-level normalization
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Figure 1. Overview of ProCan Compendium. A, The data were assembled from studies involving 20 collaborating cancer research groups

across seven countries. B, The circular bar plot shows the sample sizes of the 30 cohorts, with the largest being the pan-cancer cohort (cohort 1).

C, Bar plot showing the number of quantified proteins; the red dot indicates the number of samples. D, Box plot of mean Pearson’s r for replicates,
cancer types, tissue of origin, random sets of 10,000 samples, and different MS instruments. Box-and-whisker plots display 1.5x interquartile
ranges, with centers indicating medians and red diamonds representing mean values. E, UMAP with samples colored by cancer types. Clusters of
cancer subtypes as per histologic classification are evident. F, UMAP of carcinoma subtypes. Clusters of different subtypes as per primary tissue of
origin are evident. (A, Created with BioRender.com.)
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Figure 2. Local learning, centralized learning, and FL. A, Local learning refers to training machine learning models on local sites without sharing data
with other sites or a central server. B, Centralized learning involves collecting data from multiple local sites and aggregating data on a central server where
a centralized machine learning model is trained. C, In FL, local models are trained on decentralized sites, each residing behind their respective firewalls.
Only the model parameters, and not the raw data, are shared with a central server. These model parameters are then aggregated to form a global model.
The global model is sent back to all local sites for the next round of training. Numbers 1-3 correspond to the first three algorithmic steps in ProCanFDL.

(Created with BioRender.com.)

was performed. The input data for all machine learning
models were organized in a data matrix format, in which
rows represent samples and columns correspond to protein
abundances. We designated 10% of the patients from each of
cohorts 2 to 30 as the fixed hold-out test set T. The training
set consisted of the remaining 90% of data from cohorts 2 to
30 and all of the data from cohort 1 (Fig. 3A; “Methods”). To
set up a curated baseline with cohort 1, we applied further
quality control filtering steps, including histopathologic
validation (“Methods”). The performance of the models for
local, centralized, and ProCanFDL was evaluated using the
same test set, T. Local, centralized, and ProCanFDL models
employed identical deep learning architectures and hyper-
parameters, optimized through the cross-validation process
using cohort 1 (Fig. 3B; “Methods”).

Site Simulation

We created four local sites to simulate a FL scenario in
which data from different institutions cannot be centrally
combined due to privacy regulations. To obtain statistically
robust and generalizable results, we ran the simulation 10
times. In each iteration, site 1 always included only data from
cohort 1, whereas the other sites received a randomly selected,
nonrepeating subset of cohorts from the remaining 29. This
approach generated 10 unbiased cohort distributions across
sites 2 to 4, ensuring that each site contained approximately
10 cohorts, representing a meaningful fraction of the 14 cancer
subtypes (Fig. 3C). In addition, this setup demonstrates how
different cancer subtypes are distributed across the sites in each
experiment, highlighting the heterogeneous nature of data dis-
tribution in the FL setup (Supplementary Figs. S4 and SS5).
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Figure 3. Experiment setup and model performance. A, The ProCan Compendium consists of cohorts 1-30. Cohort 1, along with 90% of cohorts 2-30,
forms the training set, whereas the remaining 10% of cohorts 2-30 constitutes the hold-out test set. B, The final local, centralized, and ProCanFDL models
were evaluated on the same test set. C, Ten experiments for evaluating ProCanFDL. Site 1 always contains cohort 1 (C1), whereas each site from sites 2-4
contains a random subset of cohorts. D, The performance of each model was benchmarked by macro-averaged AUROC for sites 2-4 and ProCanFDL. The
AUROCs were annotated as the mean values + the half-width of the 95% confidence intervals estimated from 10 experiments. E, AUROC of models across
14 cancer subtypes. The full names of the cancer subtypes can be found in “Methods! (C, Created with BioRender.com.)

Local Learning

We trained alocal model for cohort 1 data atssite 1. The per-
formance of the final model achieved a macro-averaged area
under the receiver operating characteristic curve (AUROC) of
0.9805 and an accuracy of 0.847 for classifying the 14 cancer

subtypes (Fig. 3D; Supplementary Fig. S6A-S6C; “Methods”).
We then evaluated the performance of the local models for
sites 2 to 4 by averaging the results from 10 experiments for
each site. Site 2 achieved a mean macro-averaged AUROC
of 0.9502, and sites 3 and 4 recorded values of 0.9680 and
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0.9522, respectively (Fig. 3D). These scores were lower than
the mean macro-averaged AUROC of site 1, primarily due
to the absence of data encompassing all 14 cancer subtypes,
which was only available at site 1.

Centralized Learning

The centralized learning approach combines all data from
the training set to train a single centralized model. The cen-
tralized model achieved a macro-averaged AUROC of 0.9999
(Fig. 3D) and an accuracy of 0.990 (Supplementary Fig. S6A-
S6C), significantly outperforming the local models. These re-
sults demonstrate the expected benefits of data aggregation
in improving predictive performance, but this approach re-
quires the sharing of data between sites, which may be pre-
vented by local laws and regulations.

ProCanFDL

Using the four-step algorithmic procedure of ProCanFDL,
we developed a global model for each experiment (“Methods”).
The performances of the global models were averaged
across the 10 experiments. The ProCanFDL global model
achieved a mean macro-averaged AUROC of 0.9992 (Fig. 3D)
and a mean accuracy of 0.965 (Supplementary Fig. S6A-S6C).
This represents a substantial improvement over the local
models for sites 1 to 4 and approximates the performance
of the centralized model. The AUROC for each cancer sub-
type is detailed in Fig. 3E and Supplementary Table S2.
We next evaluated the number of true and false predic-
tions across each class generated by the ProCanFDL global
model with the highest macro-averaged AUROC from the
10 experiments. The global model achieved 100% sensitiv-
ity (true positive rate) in classifying 10 out of 14 cancer
subtypes, plus sensitivity exceeding 90% for lung squamous
carcinoma (Supplementary Fig. S6D), confirming the pre-
dictive power of the model.

Overall, these findings highlight the effectiveness of
ProCanFDL in improving cancer subtyping performance.
Notably, the federated approach not only surpasses the per-
formance of local models but also delivers results compara-
ble with the centralized model while providing the critical
advantage of preserving data privacy, potentially enabling
large-scale machine learning across sites worldwide.

Generalization and Integration

To rigorously assess the ProCanFDL model’s performance
on unseen data and provide a clear indication of its general-
izability beyond the ProCan Compendium dataset and the
DIA-MS method, we included datasets generated in other
laboratories. We selected datasets encompassing subsets of 65
cancer subtypes, generated using two distinct MS technolo-
gies [DIA-MS and tandem mass tagging (TMT)]. For DIA-MS,
we retrieved two cohorts from the Proteomics Identification
database, one consisting of 40 colorectal adenocarcinoma
samples from Spain and another with 15 pancreatic ductal
adenocarcinoma samples from South Africa (18, 19). For
TMT, we accessed data from the Clinical Proteomic Tumor
Analysis Consortium (CPTAC) in the USA, which included
832 tumor samples across eight cohorts (Supplementary
Table S3; ref. 20).

To ensure consistency across the different datasets,
protein-wise z-score normalization was applied to both the
DIA-MS proteomic data (the ProCan Compendium and
two external DIA-MS cohorts) and the eight TMT cohorts
separately. The two DIA-MS datasets were concatenated
sample-wise into a single matrix before normalization, as
were the eight TMT cohorts. The two normalized matrices
were then concatenated sample-wise again to produce a final
input matrix containing a set of 3,837 proteins that were
quantified in common in these cohorts.

We applied the train-test split across the external data (21).
In this method, 90% of the external data, comprising the 10
cohorts, was used to simulate additional local sites 5 and 6,
whereas the remaining 10% was held out and combined with
the existing hold-out test set T to form a new, unbiased eval-
uation set T” (Supplementary Fig. S7A). This test set T’ was
then used to evaluate and compare the generalizable perfor-
mance of local, centralized, and ProCanFDL global models.
The two external DIA-MS training cohorts were grouped as
site 5, and the eight TMT training cohorts from CPTAC were
grouped as site 6 (Supplementary Fig. S7B). The inclusion of
these external datasets allowed us to extend the analysis to
two additional cancer subtypes, high-grade serous ovarian
carcinoma and clear-cell renal cell carcinoma, for which in-
sufficient samples were available to meet the training cohort
selection criterion of a minimum of 20 samples per cancer
subtype in cohorts 2 to 30 of the ProCan Compendium. Thus,
in the external validation analysis, the total number of cancer
subtypes analyzed increased from 14 to 16, the total number
of samples meeting the criteria for analysis in sites 1 to 4 in-
creased by 195, and the number of samples from sites 1 to 4
included in the holdout test set increased by two.

The predictive performance of these local models was re-
flected by macro-averaged AUROCs of 0.8831 for site 1,
0.5162 for site 5, and 0.7294 for site 6. Additionally, the
mean macro-averaged AUROCs over 10 experiments were
0.9133, 0.9038, and 0.8959 for sites 2, 3, and 4, respectively
(Fig. 4A). Notably, local models from sites 5 and 6 exhibited
lower performance across different cancer subtypes compared
with those from sites 1 to 4, likely due to the limited cover-
age of the cancer subtypes. In contrast, the centralized model,
trained on aggregated data from all six sites, exhibited sig-
nificantly superior performance, achieving a macro-averaged
AUROC 0f 0.9999 across all cancer subtypes (Fig. 4A). By fully
integrating both internal data (sites 1-4) and external data
(sites 5 and 6), the centralized model captured a more com-
prehensive range of features and cancer subtypes, enhancing
its predictive accuracy.

The ProCanFDL global model, trained in a federated man-
ner across sites 1 to 6, showed substantial improvements over
the local models. The global model achieved a macro-averaged
AUROC of 0.9987 (Fig. 4A). The predictive performance of
the global model was similar to that of the centralized model
while maintaining data privacy. Accuracy measures for local,
centralized, and ProCanFDL models are provided in Supple-
mentary Fig. S8A-S8C. The AUROC for each cancer subtype
is detailed in Fig. 4B and Supplementary Table S4. A confu-
sion matrix was generated for the global model with the high-
est macro-averaged AUROC, providing a detailed assessment of
true and false predictions for each subtype. The model achieved
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Figure 4. Generalization, integration, and model explanation. A, Performance of models was benchmarked by the AUROC with 95% confidence
intervals estimated from the 10 experiments. B, AUROC of models across 16 cancer subtypes. C, Beeswarm plot demonstrating the top 10 proteins
contributing to the prediction of prostate adenocarcinoma. D, Top 10 proteins contributing to the prediction of colorectal adenocarcinoma. E, Comparison
of the top upregulated and downregulated pathways as identified by overrepresentation analysis using the top and bottom 200 proteins per SHAP
value for lung adenocarcinoma between the global and local models. (continued on following page)
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Federated Learning Enables Cancer Subtyping by Proteomics

100% sensitivity for 9 out of 16 cancer subtypes, with particu-
larly high sensitivity rates for subtypes such as pancreatic duc-
tal adenocarcinoma, hepatocellular carcinoma, and head and
neck squamous cell carcinoma (Supplementary Fig. S8D).

In summary, external validation of ProCanFDL, which also
integrated datasets from two distinct MS platform types,
showed that the global model consistently outperformed the
local models. Importantly, the global model’s performance
matched that of the centralized model.

Model Explanation

For potential downstream clinical application and interpreta-
tion, understanding the learned relationships and key discrim-
inatory proteins in the ProCanFDL global model is important.
By leveraging Shapley Additive Explanation (SHAP) values (22),
we identified the top features contributing to the cancer sub-
type predictions made by the ProCanFDL global model, which
achieved the highest AUROC when trained with internal data
(Supplementary Table S5). For example, proteins with utility
in distinguishing between histologic types of cancer were iden-
tified. Desmoglein 3 (DSG3), a marker of squamous differen-
tiation (23), was identified within the top 10 SHAP values for
both cutaneous and head and neck squamous cell cancers, with
SHAP values for this marker contributing negatively to the pre-
diction of the other cancer subtypes (Supplementary Fig. S9A).
Similarly, markers suggesting epithelial differentiation, such as
anterior gradient 2 (AGR2), a protein disulfide isomerase fam-
ily member (24), contributed positively to the identification of
breast, colorectal, and pancreatic adenocarcinomas but neg-
atively to the identification of tumors arising from other cell
types, including pancreatic neuroendocrine tumors, sarcoma,
and melanoma (Supplementary Fig. S9B). Finally, additional
proteins were specific for identifying different tissues, including
kallikrein-related peptidase 3 (prostate-specific antigen) and
Purkinje cell protein 4 (PCP4) for prostate adenocarcinoma
(Fig. 4C), as well as galectin 4 (LGALS4) and cadherin 17
(CDH17), which are known to be expressed in the intestinal
epithelium, for colorectal adenocarcinoma (Fig. 4D; ref. 25).
Cytokeratin 20 (KRT20) featured among the top 10 SHAP
values for predicting colorectal adenocarcinoma and is
known to have clinical utility for differentiating this cancer
subtype from other subtypes of adenocarcinoma (26).

Overrepresentation analysis using the top 200 positive
and negative SHAP values (Supplementary Fig. S10) for each
cancer subtype revealed similar patterns with significant en-
richment scores identified for specific or closely related cell
types. Lung adenocarcinoma showed enrichment for alveolar
type 2 cells driven by proteins, including napsin A (NAPSA),
surfactant protein B (SFTPB), and lysophosphatidylcholine
acyltransferase 1 (LPCAT2) (27). Squamous cancers were

generally enriched for basal cells driven by proteins ex-
pressed in the squamous epithelium, including cytokeratin
6A (KRT6A), which has clinical utility in identifying squa-
mous carcinoma (28). Esophageal and colorectal adenocarci-
noma showed enrichment for enterocytes driven by proteins,
including villin 1 (VIL1), as well as potential antibody-drug
conjugate (ADC) targets, including carcinoembryonic anti-
gen cell adhesion molecule 5 (CEACAMS; 29) and claudin 3
(CLDNS3; 30, 31). This cell type contributed negatively to the
identification of several cancer subtypes, including pancre-
atic neuroendocrine tumors, breast carcinoma, and leiomyo-
sarcoma. Of note, in the FDL model, one liposarcoma case
was misclassified as breast carcinoma due to the presence of
proteins enriched in adipose tissue (fatty acid binding protein
4 (FABP4), perilipin 1 (PLIN1), and lipase E (LIPE); ref. 25)
across both cancer subtypes.

Next, we evaluated biological associations using the top
and bottom 200 proteins for each cancer subtype across sev-
eral pathway databases (Supplementary Fig. S11). For pancre-
atic ductal adenocarcinoma, we identified pathways related to
the extracellular matrix. Dense stroma is a key feature and a
well-recognized barrier to efficient chemotherapeutic delivery
in this cancer subtype. Pathways contributing positively to
the identification of hepatocellular carcinoma highlighted a
propensity for metabolic processes, including histidine and
choline catabolism, consistent with the presence of hepatic
tissue (32). We then compared the top identified pathways
across the global and local models. The degree of overlap
within the top and bottom 200 proteins, as identified by
SHAP value for each model, was 221/400 (55%; Supplemen-
tary Fig. S12). Both models provided relevant biological
information. For example, in both models, the top features
contributing positively toward the identification of leiomyo-
sarcoma were related to muscle development pathways, con-
sistent with the known cell type of origin (33). Similarly, for
squamous cancers, pathways relating to keratinization and
the cornified envelope were identified, consistent with squa-
mous epithelial origin (32). Further, these pathways contrib-
uted negatively to the identification of other cancer subtypes
across both models, including colorectal cancer (Supple-
mentary Fig. S11). However, there were notable differences
between the global and local models, particularly for cancer
subtypes underrepresented in the local model. For lung ad-
enocarcinoma, pathways identified in the local model were
related to underlying lung tissue, including surfactant me-
tabolism and O-glycan biosynthesis due to the expression of
multiple mucins, such as MUCSAC and MUCSB (34). In con-
trast, the global model identified pathways potentially more
relevant to lung cancer biology, including the MET proto-
oncogene. MET alterations are seen in more than 70% of lung
adenocarcinoma tumor tissues (35), with multiple preclinical

<

Figure 4. (Continued) F, Heatmap showing the normalized enrichment scores for selected Hallmark gene sets across cancer subtypes in the global
model. Pathways contributing positively toward the identification of each cancer subtype are shown in red, whereas pathways contributing negatively
toward the identification of each cancer subtype are shown in blue. Plausible biological associations are identified within cancer subtypes. GO, Gene
Ontology; GSVA, gene set variation analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes. BRCA, breast carcinoma; ccRCC, clear-cell renal cell
carcinoma; COAD, colorectal adenocarcinoma; CM, cutaneous melanoma; cSCC, cutaneous squamous cell carcinoma; ESAD, esophageal adenocarcinoma;
HNSCC, head and neck squamous carcinoma; HCC, hepatocellular carcinoma; HGSOC, high-grade serous ovarian carcinoma; LMS, leiomyosarcoma;
LPS, liposarcoma; LUAD, lung adenocarcinoma; LUSC, lung squamous carcinoma; PancNET, pancreatic neuroendocrine tumor; PDAC, pancreatic ductal

adenocarcinoma; PRAD, prostate adenocarcinoma.
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and clinical studies currently investigating the role of c-MET-
directed ADCs in this cancer subtype (36-38). Further, we
identified several pathways relating to glycosphingolipid me-
tabolism, which has been linked to lung cancer growth and
progression (Fig. 4E; refs. 39-41). For colorectal cancer, the
local model highlighted nonspecific pathways, including neu-
trophil degranulation and tissue-specific immune response.
However, the global model highlighted pathways related to
triglyceride metabolism and peroxisome proliferator-activated
receptor signaling, which were driven by several fatty acid
binding and perlipin proteins. FABP4 has been postulated
as a diagnostic biomarker (42) for colorectal cancer and may
have prognostic significance.

We then examined the protein features contributing posi-
tively and negatively to the prediction of each cancer subtype
using the Hallmark gene set collection (Fig. 4F; ref. 43). For pan-
creatic adenocarcinoma and neuroendocrine tumors, we noted
proteins specific to pancreatic beta cells, including glucagon
(GCG), somatostatin (SST), and pyruvate kinase L/R (PKLR).
For breast adenocarcinoma, we noted proteins related to es-
trogen response, including several ETS transcription factors
(ETS1 and ELF1). We also noted plausible patterns related
to cancer signaling pathways; for example, Notch signaling
contributed positively toward the identification of pancreatic
adenocarcinoma and melanoma (44). Several PI3K pathway
targets were identified in head and neck squamous cancers,
including EGFR, which is overexpressed in up to 90% of these
cancers (45).

Finally, we looked at drug and immune treatment targets,
including approved and emerging ADC targets (Supplemen-
tary Fig. S13). Again, plausible biological patterns were identi-
fied. For example, ERBB2, which is a well-established prognostic
and therapeutic biomarker in breast cancer (46), showed a
strong association with this cancer subtype. Trophoblast cell
surface antigen 2 (TROP2), which is the target of the ADC
sacituzumab govitecan, contributed positively to the identi-
fication of breast, head and neck squamous, lung squamous,
and prostate adenocarcinoma. TROP2 contributed negatively
to the identification of nonepithelial tumor entities, includ-
ing liposarcoma, leiomyosarcoma, and melanoma, as well as
colorectal adenocarcinoma, in keeping with published IHC
and RNA data (47). Several markers involved in immune
responses, such as signal transducer and activator of tran-
scription 3 (STAT3), intercellular adhesion molecule 1 (ICAMI),
and CD274 (programmed death-ligand 1 (PD-L1), contrib-
uted positively to the identification of lung adenocarcinoma.
Of note, PD-L1 expression has clinical utility in predicting the
response of non-small cell lung cancer to checkpoint inhibi-
tor therapy (48, 49).

Collectively, the proteins and pathways highlighted by
model explanation analysis demonstrate that the FDL model
predictions are plausibly related to known biological patterns
that differ among cancer subtypes.

DISCUSSION

We have developed ProCanFDL, which enables accurate
cancer subtyping using proteomic data derived from 7,525
FF and FFPE human biospecimens. The framework leverages
data from 20 cancer research groups across seven countries

and is processed in many different pathology laboratories,
utilizing a privacy-preserving machine learning approach.
Additionally, we demonstrated that ProCanFDL can integrate
proteomic data generated via two different MS technologies.

The use of proteomic data in large-scale machine learning
models has to date been limited by significant challenges, in-
cluding the difficulties of integrating proteomic data from
different platforms (50, 51). Moreover, data centralization is
difficult to achieve with sensitive patient data, especially from
different jurisdictions (7). FL offers a potential solution to
these issues by allowing collaborative training across multi-
ple sites without the need to transfer raw data. The use of FL
with patient data, including chest X-rays and scans during the
COVID-19 pandemic (10), illustrated the rapid gains that can
be made by privacy-compliant data sharing.

Our model, which simulated FL by distributing data across
four local sites behind private firewalls, demonstrated the
feasibility of a real-world scenario whereby datasets are held
across different institutions. By performing training inde-
pendently at each local site and aggregating model updates
centrally to form a global model, sensitive patient data can
remain behind institutional firewalls. Notably, the model
was enhanced by the incorporation of a distinct type of pro-
teomic technology, TMT. Difficulties with the integration of
data from different proteomic platforms have been a major
issue in the aggregation of proteomic data. Therefore, Pro-
CanFDL addresses multiple barriers to significantly scaling
up proteomic machine learning analyses.

We used the macro-averaged AUROC as the primary
model evaluation metric in this study. This method pro-
vides a more nuanced view of model performance compared
with accuracy, especially in multiclass classification tasks in
which class imbalances may exist. By assigning equal weight-
ing to each class, regardless of sample size, it ensures that
performance is assessed fairly across all cancer subtypes,
preventing larger classes from dominating and biasing the
evaluation metrics.

As with previous FL studies (10), the ProCanFDL global
model demonstrated a 43% improvement over local models,
highlighting the benefits of aggregating model parameters
from local sites to enhance sample diversity and represen-
tation of cancer subtypes. This collaborative approach is
particularly advantageous for sites with limited samples or
underrepresented subtypes. By incorporating data from mul-
tiple local sites, the global model could accurately predict
subtypes that were not present in the local datasets, thereby
increasing its robustness and generalizability. Additionally,
the global model achieved comparable evaluation metrics to
the centralized model while offering the significant advantage
of eliminating the need for data sharing between local sites.
These attributes make ProCanFDL a practical and scalable
solution for collaborative learning in proteomics, especially
in situations in which data privacy is paramount. This advan-
tage is further underscored when considering the limitations
of “regulatorily clean” datasets from some local sites, where
patient selection criteria often result in cohorts that are not
representative of broader patient populations. This con-
strained representation can lead to reduced local predictive
performance, yet our global model maintains robust accuracy
through effective aggregation.
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Unlike most studies that use independent datasets with
uniform distribution for external validation, we applied a
train-test split across external datasets to address the inher-
ently nonuniform data distributions obtained from different
proteomic platforms and to ensure model generalization and
robustness. This approach allows the model to adapt to varia-
tions in data while maintaining privacy.

By model explanation analysis, we identified several im-
portant biological relationships, including the enrichment
of proteins specific to cancer subtypes and relevant biolog-
ical pathway information. This suggests that in addition to
achieving high accuracy, the model can also capture mean-
ingful biological signals. Such model explainability is vital
for the acceptance of these technologies and their potential
translation into clinical practice. We identified relevant ADC
and immune targets, with patterns consistent with previous
expression data. This highlights the unexplored potential of
the ProCan Compendium to identify proteins with potential
downstream prognostic and treatment applications. We an-
ticipate that the application of ProCanFDL will facilitate our
understanding of cancer biology and enable the use of pro-
teomic data as an adjunct to histopathology in challenging
diagnostic situations.

Although we demonstrated the utility of ProCanFDL, sev-
eral limitations of the study provide scope for improvement
and extension. One area for future research is the application
of this FDL framework to more complex multi-institutional
setups, in which even greater variations in data types, collec-
tion methods, and processing protocols could introduce ad-
ditional data harmonization challenges. Our implementation
used a simulated FL scenario in which global normalization
was possible, but real-world FL deployments would require
specialized techniques such as federated batch normaliza-
tion (52) to harmonize data across sites without sharing raw
values. This represents a significant technical challenge, as
proteomics data normalization typically requires global sta-
tistics that cannot be directly shared in privacy-preserving
scenarios. Another important direction is addressing the
challenge of missing data by adapting FL frameworks such as
FedIMPUTE (53) to handle missing data. Further, this study
served as a proof of concept focused on cancer subtyping due
to the availability of relevant annotations. Expanding its ap-
plication to areas such as prognostic biomarker development
and clinical outcome prediction will require datasets anno-
tated with treatment outcomes, survival data, and other de-
tailed metadata at each participating site.

ProCanFDL enables the development of foundation mod-
els for proteomics. Unlike large language models such as
ChatGPT or foundation models for digital pathology, which
benefit from large public datasets or readily available imag-
ing data, the development of large proteomic models faces
significant challenges due to restricted access to clinically an-
notated datasets. ProCanFDL will enable the gathering and
utilization of the data needed to train proteomic foundation
models without compromising data privacy. This federated
approach is essential for creating the large, diverse datasets
necessary for training robust and generalizable models. We
envision that future iterations of ProCanFDL, trained on even
larger and more diverse datasets through FL, will drive the de-
velopment of pretrained foundation models for proteomics.

Overall, ProCanFDL represents a significant and tangi-
ble step toward applying FL to large-scale cancer proteomic
datasets generated by different MS technologies. By balanc-
ing the need for robust and accurate model performance
with data privacy, it fosters a practical and scalable solution
for proteomic data analysis and collaborative biomedical re-
search. We anticipate that this will create new opportunities
in cancer research, for example, for the discovery of novel
treatment targets and predictive biomarkers; accelerate the
clinical application of proteomic technologies; and extend
to multiomic data applications beyond proteomics.

METHODS

Biospecimen and Data Collection

FF and FFPE samples were obtained from malignant samples
(tumor and premalignant samples) and nonmalignant tissues
(benign tumors and tumor-adjacent normal samples). Ethics ap-
proval was obtained for the use of all patient samples. Cohort 1 con-
sisted of FF samples (n = 766 primary tumor samples and n = 494
tumor-adjacent normal samples) obtained from the Victorian
Cancer Biobank [2019/ETH02039 (HREC/17/WMEAD/63)], the
Gynaecological Oncology Biobank (GynBiobank) at Westmead Hos-
pital [2019/ETH02039 (HREC/17/WMEAD/63); 2019/ETH02043
(LNR/16/WMEAD/291)], and the Children’s Medical Research In-
stitute Legacy sample set [2019/ETH05866 (LNR/17/SCHN/291)].
Cohorts 2 to 30 included both FF and FFPE samples obtained from
the following sites: Gynaecological Oncology Biobank (GynBio-
bank) at Westmead Hospital, Australia [2019/ETH02039 (HREC/17/
WMEAD/63); 2019/ETH02043 (LNR/16/WMEAD/291)]; NCI
Biobank, USA [2019/ETH02039 (HREC/17/WMEAD/63); 2019/
ETH02075 (LNR/17/WMEAD/249)]; Westmead Institute for Med-
ical Research, Australia [2019/ETH02039 (HREC/17/WMEAD/63);
2019/ETH10764 (LNR/19/WMEAD/39)]; Germans Trias i Pujol
Research Institute, Badalona, Spain [2019/ETH06112 (HREC/17/
SCHN/63), PI-17-079]; Royal Prince Alfred Hospital and Cente-
nary Institute, Australia [2019/ETH02039 (HREC/17/WMEAD/63);
2021/ETH11460]; Royal Prince Alfred Hospital and Woolcock Insti-
tute, Australia [2019/ETH02039 (HREC/17/WMEAD/63); 2020/
ETHO01304 (X20-0223)]; St Vincent’s Hospital, Department of Sur-
gery, Sydney, Australia, and Institute of Clinical Sciences, Lund Uni-
versity Hospital, Sweden [2019/ETH02039 (HREC/17/WMEAD/63);
2021/ETH11590]; Garvan Institute of Medical Research (APGI),
Australia [2019/ETH02039 (HREC/17/WMEAD/63); X16-0293
(HREC/11/RPAH/329)]; Garvan Institute of Medical Research [2019/
ETH02039 (HREC/17/WMEAD/63)]; Melanoma Institute Australia
[2019/ETH02039 (HREC/17/WMEAD/63); X15-0454 (HREC/11/
RPAH/444); X17-0312 (HREC/11/RPAH/32); X15-0311 (HREC/10/
RPAH/530)]; International Sarcoma Kindred Study [2019/
ETHO02039 (HREC/17/WMEAD/63); SVH 16/126; PMCC 09/11];
University of Manitoba Tissue Biobank, Canada [2019/ETH02039
(HREC/17/WMEAD/63); HS14811 (H2001-083)]; Australian Breast
Cancer Tissue Bank [2019/ETH02039 (HREC/17/WMEAD/63);
2019/ETH02413 (LNR/16/WMEAD/93)]; Nepean Research Bio-
bank, Australia [2019/ETH02039 (HREC/17/WMEAD/63)]; Prin-
cess Alexandra Hospital, Queensland Medical Labs, Mater Hospital,
Queensland, Australia [2019/ETH02039 (HREC/17/WMEAD/63);
PR/2022/QMS/8692 (HREC/03/QPAH/197)]; Institute of Cancer Re-
search, Comprehensive Cancer Centre, Medical University of Vienna,
Austria [2019/ETH02039 (HREC/17/WMEAD/63); 1312/2022];
the University of Sydney, Royal North Shore Hospital, NSW Health
Pathology, Australia [2019/ETH02039 (HREC/17/WMEAD/63);
2019/ETH08639 (HREC/16/HAWKE/105)]; Jewish General Hos-
pital Breast Cancer Biobank, Montreal, Canada [2019/ETH02039
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(HREC/17/WMEAD/63); 2023-3377]; Laboratory of Translational
Oncology, Medical School, University of Crete, and Laboratory of Pa-
thology, University Hospital of Heraklion, Greece [2019/ETH02039
(HREC/17/WMEAD/63)]; and University of Crete (ref 27/February
17, 2020. University Hospital ref 9920).

Samples were sectioned as follows: 30-micron curls (at least one)
for FF tissue and 10- to 20-micron curls (at least one) for FFPE tissue.
A small proportion of samples underwent tissue punching (using a
1 mm biopsy punch tool) or macrodissection to enhance the propor-
tion of tumor content.

Specimens were annotated according to the provided histologic
cancer type and subtype diagnosis. For each sample, an adjacent he-
matoxylin and eosin slide was reviewed by a specialist pathologist
to confirm that the section received in the proteomic laboratory
was consistent with the diagnosis and to evaluate the percentage
of tumor content and necrosis, the extent of lymphocytic infiltra-
tion, and the presence of additional tissue elements. Samples in co-
hort 1 that were not consistent with the provided diagnosis (n = 84)
and/or contained a significant presence of atypical or normal tissue
elements (n = 116), had a percentage tumor content <20% (n = 57),
or had a percentage necrosis >80% (n = 14) were excluded from the
FDL analyses.

Sample Preparation and Mass Spectrometric Acquisition

All samples were prepared using the Heat ‘n Beat (17) method, and
MS data were acquired from technical duplicate or triplicate MS runs
using seven different SCIEX TripleTOF 6600 mass spectrometers.

Spectral Library Generation

To generate the spectral library, 19,930 DIA-MS runs from the
ProCan Compendium were collected in .wiff file format and pro-
cessed using DIA-NN software. MS/MS spectra were referenced to
the UniProt human proteome (RRID:SCR_002380). The spectral
library, containing 193,354 peptides, including retention time pep-
tides and peptides from commonly occurring microbial and viral
proteins, and corresponding to a total of 15,306 proteins, was used
to search the entire set of 19,930 sample and quality control runs to
extract the DIA data.

Data Extraction

Raw DIA-MS data were processed using DIA-NN software,
implementing retention time-dependent normalization and the
DIA-NN-generated spectral library. The input parameters are
given below:

-report-lib-info --out step3-out.tsv --qvalue 0.01 --pg-level
1 --mass-acc-msl 40 --mass-acc 40 --window 9 --int-removal
1 --matrices --temp . --smart-profiling --peak-center

Data were filtered to retain only precursors from proteotypic
peptides with Global.Q.Value <0.01. Protein abundance was cal-
culated using maxLFQ, with default parameters and implemented
using the DIA-NN R package (https://github.com/vdemichev/
diann-rpackage). Data were then log,-transformed.

Proteomic Profiling

All data were processed using custom R/Python scripts (RRID:
SCR_001905, SCR_008394). For the entire set of samples from the
ProCan Compendium, the Pearson’s correlation coefficient was
calculated using the corr function in the Python (RRID: 008394)
package pandas (v2.0.3) to analyze the technical reproducibility of
the data. In addition to the correlation among replicates from each
sample, the mean correlation among samples from different can-
cer types, tissues of origin, MS instruments, and randomly selected
samples was also calculated. Batch effects and clustering for these

multicohort data were visualized using the UMAP dimensional-
ity reduction tool. Moreover, the numbers of proteins quantified
across tissues of origin and cancer types were assessed using box
plots. The box plots showed the range of proteins quantified in
each tissue and cancer type, along with the median protein count
in each class.

To further investigate the proteomic profiles of cancer subtypes
from various origins, we selected cell type-enriched proteins using
previously defined thresholds (13). Cell type-enriched proteins were
defined as proteins quantified in at least 50% of samples from no
more than one cancer subtype and in <35% of samples from all other
subtypes, considering only subtypes represented by at least 10 sam-
ples. For this, only tumor samples were used.

Preprocessing and Statistical Analysis

For downstream analysis, the sample replicates were merged,
and a final protein matrix with only tumor samples was used. The
protein matrix showed an average of 57% missingness per individ-
ual sample. Missing values were imputed with zero. No additional
normalization or preprocessing was performed. In addition to fil-
tering by replicate correlation, we also filtered samples in cohort
1 to include only those samples in the FDL analyses that met the
following criteria: (i) consistent with the histopathologic diagno-
sis, (i) adequate percentage of tumor content, and (iii) low per-
centage of necrosis (see “Methods” and “Biospecimen and Data
Collection”).

Preparation of Training and Test Sets

The train-test split of 90% training and 10% testing was per-
formed at the patient level, ensuring that multiple samples from
the same patient were consistently assigned to the training set. For
patients assigned to the test set, one random sample was selected to
simulate real-world conditions.

Hyperparameter Tuning

Hyperparameter tuning was conducted via a threefold cross-
validation on cohort 1. Based on the cross-validation results, which
helped identify the optimal architecture for model performance, the
final architecture includes an input layer, a hidden layer, a Rectified
Linear Unit (ReLU) activation function, a dropout layer with a prob-
ability of 0.2, and an output layer. The hyperparameters for the train-
ing process were set as follows: a learning rate of 1 x 107, a weight
decay of 1 x 107*, a hidden dimension size of 256, a batch size of 100,
and a total of 200 epochs. The Adam optimizer was utilized to update
the model parameters during training. Default settings were used
for other hyperparameters that are not specifically mentioned above.
These hyperparameters were then used for all models in local, central-
ized, and ProCanFDL learning.

ProCanFDL

ProCanFDL is a deep learning-based FL framework with a neural
network architecture. FDL is conducted through iterative communi-
cation rounds between the central server and the participating local
sites. The training procedure comprises the following four steps.

Step 1: Initialization and Local Training. A global model was first
initialized with random weights and distributed to all participat-
ing local sites. This initial global model served as the starting point
for the subsequent rounds of FL, ensuring that each site began the
process with a common starting point. The model architecture was
consistent across all sites, ensuring uniformity in training and sub-
sequent aggregation. Each participating site locally trained its own
instance of the deep learning model on its private proteomic data.
PyTorch (v2.3.0) was utilized as the deep learning framework to
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implement and train the model. During this phase, model parame-
ters (weights and biases) were optimized using the Adam optimizer.
To prevent overfitting and enhance generalization, techniques such
as early stopping and dropout were applied, as detailed in the model’s
hyperparameter setup. The local models were trained independently,
capturing unique proteomic signatures relevant to specific cancer
types and tissues of origin. No raw data were shared between sites,
ensuring data privacy.

Step 2: Global Model Aggregation. Following local training, the
optimized model parameters, specifically the weights and biases, were
securely transferred from each site to a central server. The server ag-
gregated these updates using the federated averaging algorithm. The
aggregation involved averaging the weights from all participating
sites, resulting in a new global model that reflected the pooled knowl-
edge from all local datasets, without the central server accessing any
raw data. This step allowed the global model to capture the diversity
of the proteomic data from all sites.

Step 3: Global Model Update. Once the aggregation was com-
plete, the updated global model parameters were distributed back to
all participating sites. Each site received the updated global model,
which served as the starting point for the next round of local training.
This iterative exchange allowed the model to progressively improve
and adapt to the heterogeneous data across the sites.

Step 4: Iteration and Convergence. Steps 1 to 3 were repeated for
a total of 10 iterations. This fixed number of iterations allowed the
model to progressively refine its performance by incorporating data
from all local sites. After the 10 iterations, the global model was
evaluated on a hold-out test set to assess its generalizability across
cancer subtypes. All global models in this study converged within 10
iterations, but the number of iterations may need to be increased for
other data and tasks.

A pseudocode for this four-step algorithm is described below.

// Initialization
Initialize global_model with random weights
Distribute global_model to all local sites
// Iterative process with 10 iterations (Step 4)
for iteration in range(10):

// Step 1: Local Training

for each site in participating_sites:
// Train the local model using the given data and hyper-

parameters
local_model = train_model(global_model, site_data,
hyperparameters)

// Optimize the model parameters using the Adam optimizer
local_weights = optimize(local_model, ‘Adam’, hyper-
parameters)

end

// Step 2: Global Model Aggregation

// Send local model parameters (weights) to the central server
local_weights = send_to_server(local_model_parameters)
// Central server aggregates all local weights

global_weights = federated_average(local_weights)

// Step 3: Global Model Update
// Update global model with aggregated weights from all sites
global_model.update(global_weights)
// Distribute updated global model back to the local sites
distribute(global_model, participating_sites)

end

// Evaluation of the final global model on the test set
evaluate(global_model, hold_out_test_set)

Evaluation Metrics

The performance of ProCanFDL was measured using the fol-
lowing two metrics. The first was the AUROC, which is calculated
for multiclass classification using the one-vs-rest approach. For
each cancer subtype successively, that subtype is treated as the
positive class, whereas the remaining subtypes are considered to
be negative, allowing for the calculation of per-class AUROC. To
more comprehensively evaluate the model’s ability to discriminate
between multiclass cancer subtypes, the macro-averaged AUROC
is computed by averaging the AUROC scores across all classes
without class-size weighting. This macro-average provides an over-
all measure of model performance across all classes, treating each
class equally regardless of its prevalence in the dataset. The second
metric is the multiclass accuracy, which measures the proportion
of correctly classified cancer subtypes among the total instances:

Number of Correct Predictions
Total Number of Predictions

Accuracy =

This provides a single value that summarizes the model’s perfor-
mance across all cancer subtypes.

Model Explanation Analysis

Feature importance scores from the FDL model were calculated
using SHAP values with the Python package, SHAP (v0.45.1; ref. 22).
In the beeswarm plots, features contributing positively to class pre-
diction are shown on the right-hand side, and features contributing
negatively are shown on the left-hand side. Overrepresentation anal-
ysis using the 200 top and bottom proteins, as indicated by SHAP
values, was performed using the WebGestalt package (54) using the
Human Cell Landscape, Reactome, Kyoto Encyclopedia of Genes and
Genomes, and Gene Ontology: Biological Pathway databases. For all
overrepresentation analyses, the g-value cutoff was set as 0.05, and the
input background gene set encompassed all proteins used for build-
ing the relevant global or local models. Feature importance scores
were also used to evaluate proteins for potential biological relevance
using the Hallmark gene set collection (23). The ranked SHAP values
were used to calculate normalized enrichment scores using the gsva
function from the R GSVA package (v1.50.5; ref. 55) for the Hallmark
gene sets obtained from the Molecular Signatures Database via the R
msigdbr package (v7.5.1). Plots were generated using the R Complex-
Heatmap (v2.18.0) and ggplot2 packages (v3.5.1).

Validation by External Datasets

To provide consistency in the underlying model structure and
training process, all local models, the centralized model, and the
ProCanFDL global model were trained using the same model archi-
tecture and hyperparameter configuration as previously applied in
local, centralized, and FL. Z-score normalization was applied using
the StandardScaler from scikit-learn (v1.4.2; RRID:SCR_002577) to
both the DIA proteomic data (18, 19) and the eight TMT datasets
from CPTAC (20) separately. Specifically, we first concatenated the
sample-wise DIA proteomic data (ProCan Compendium and two
external DIA datasets) into one matrix and then applied z-score nor-
malization to this matrix. Similarly, the eight TMT cohorts were con-
catenated sample-wise into a single matrix, and z-score normalization
was applied. Finally, the two normalized matrices were concatenated
sample-wise to serve as the input for ProCanFDL.

Data Availability

The raw DIA-MS data and processed data of cohort 1 and the cor-
responding spectral library have been deposited in the Proteomics
Identification database (PRIDE) (RRID:SCR_003411) under the
dataset identifier PXD056810. The two external DIA-MS datasets
have the identifiers PXD019549 and PXDO007810, respectively.
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Proteomics data for CPTAC datasets are available at the Proteomic
Data Commons (PDC) at https://proteomic.datacommons.cancer.
gov/pdc/cptac-pancancer. The PDC accession numbers for CPTAC
datasets are as follows: BRCA, PDC000120; CCRCC, PDC000471;
COAD, PDC000109; HNSCC, PDC000221; LUAD, PDC000153;
PDAC, PDC000270; LSCC, PDC000234; and OV, PDC000250.
The software code is available on GitHub at https://github.com/
CMRI-ProCan/ProCanFDL.
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