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Federated Deep Learning Enables Cancer 
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Jordi Navinés39, Benedict J. Panizza25, Jaswinder S. Samra6,40, Richard A. Scolyer6,9,30,31, John Souglakos41, 
Alexander Swarbrick23, David Thomas42, Rosemary L. Balleine1,11, Peter G. Hains1, Phillip J. Robinson1,  
Qing Zhong1, and Roger R. Reddel1

Artificial intelligence applications in biomedicine face major challenges from 
data privacy requirements. To address this issue for clinically annotated tissue 

proteomic data, we developed a federated deep learning approach (ProCanFDL), training local models  
on simulated sites containing data from a pan-cancer cohort (n = 1,260) and 29 cohorts held  
behind private firewalls (n = 6,265), representing 19,930 replicate data-independent acquisition mass 
spectrometry runs. Local parameter updates were aggregated to build the global model, achieving 
a 43% performance gain on the hold-out test set (n = 625) in 14 cancer subtyping tasks com-
pared with local models and matching centralized model performance. The approach’s generalizabil-
ity was demonstrated by retraining the global model with data from two external, data-independent 
acquisition mass spectrometry cohorts (n = 55) and eight acquired by tandem mass tag proteomics  
(n = 832). ProCanFDL presents a solution for internationally collaborative machine learning initiatives 
using proteomic data, for example, for discovering predictive biomarkers or treatment targets while 
maintaining data privacy.

Significance: A federated deep learning approach applied to human proteomic data, acquired 
using two distinct proteomic technologies from 40 tumor cohorts across eight countries, enabled 
accurate cancer histopathologic subtyping while preserving data privacy. This approach will enable 
the privacy-compliant development of large-scale proteomic artificial intelligence models, including 
foundation models, across institutions globally.

ABSTRACT

1ProCan, Children’s Medical Research Institute, Faculty of Medicine and 
Health, The University of Sydney, Westmead, Australia. 2Lady Davis Insti-
tute at the Jewish General Hospital, McGill University, Montreal, Canada. 
3Childhood Liver Oncology Group, Germans Trias i Pujol Research Institute, 
Badalona, Spain. 4Networking Biomedical Research Centre (CIBER) in Hepatic 
and Digestive Diseases, Barcelona, Spain. 5Laboratory of Human Carcino-
genesis, Center for Cancer Research, National Cancer Institute, Bethesda, 
Maryland. 6Faculty of Medicine and Health, The University of Sydney, 
Sydney, Australia. 7Kolling Institute of Medical Research, Royal North Shore 
Hospital, St Leonards, Australia. 8Department of Endocrinology, Royal 
North Shore Hospital, St Leonards, Australia. 9Tissue Pathology and Diag-
nostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology,  
Sydney, Australia. 10School of Medicine, Western Sydney University, 

Sydney, Australia. 11Centre for Cancer Research, The Westmead Institute for 
Medical Research, Faculty of Medicine and Health, The University of Sydney, 
Westmead, Australia. 12The Daffodil Centre, The University of Sydney, a 
joint venture with Cancer Council NSW, Westmead, Australia. 13Department 
of Gynaecological Oncology, Westmead Hospital, Westmead, Australia. 
14Center for Cancer Research, Medical University of Vienna, Vienna, Austria. 
15Comprehensive Cancer Center, Medical University of Vienna, Vienna, 
Austria. 16Austrian Breast and Colorectal Cancer Study Group, Vienna, 
Austria. 17Nepean Hospital, Kingswood, Australia. 18Westmead Breast 
Cancer Institute, Westmead Hospital, Westmead, Australia. 19Storr 
Liver Centre, The Westmead Institute for Medical Research, Westmead 
Hospital, Westmead, Australia. 20NSW Health Pathology, Department of 
Anatomical Pathology, Royal North Shore Hospital, St Leonards, Australia.  

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/doi/10.1158/2159-8290.C

D
-24-1488/3629175/cd-24-1488.pdf by U

niversity of N
ew

 South W
ales user on 21 August 2025

https://crossmark.crossref.org/dialog/?doi=&domain=pdf&date_stamp=2025-7-9


AACRJournals.org

Cai et al.

OF2 | CANCER DISCOVERY XXX 2025

RESEARCH BRIEF

Introduction
Artificial intelligence (AI) applications, driven by a wealth 

of online data, have gained traction as tools to enhance 
efficiency, convenience, and innovation across multiple sec-
tors. The use of these applications in commercial products, 
ranging from personalized recommendations in streaming 
services to generative AI tools such as ChatGPT, has led to 
the widespread uptake of these technologies and ongoing 
discussions about their appropriate use and regulation (1). 
Within the biomedical domain, numerous applications of AI 
are undergoing rapid development, including diagnostic pre-
diction tools, interpretation of radiological and histopatho-
logic images, and methods of drug discovery (2). Although 
such tools offer promise, with efficiency gains and the poten-
tial for novel insights beyond those that can be achieved by 
traditional research studies, to date, large-scale AI modeling 
in most biomedical fields continues to be hindered by several 
substantive challenges (3).

These challenges include the privacy of data, especially 
personal clinical records, data ownership and governance, hu-
man research ethics, and intellectual property concerns (4). In 
transnational studies, compliance with laws and regulations 
that impose stringent standards on the collection, storage, 
sharing, and use of biomedical data may be complicated by 
differing requirements in the relevant jurisdictions (5, 6). 
Consequently, data sharing among collaborators within  

international consortia can be infeasible, hindering the as-
sembly of heterogeneous and globally representative large-scale 
datasets and presenting a significant barrier to the develop-
ment of practical and relevant AI tools in the biomedical field. 
This contrasts sharply with commercial AI products based on 
ubiquitous information regarded as nonsensitive. However, 
for biomedical applications such as cancer research, there is 
an urgent need to utilize all sources of good-quality data for 
purposes that include expediting the discovery of drug tar-
gets and predictive biomarkers and avoiding duplication of 
resources and therefore wastage due to data siloing and inac-
cessibility. To address these challenges, innovative solutions 
that balance the need for data accessibility and protection of 
clinical data are crucial.

Federated learning (FL) offers a promising solution to some 
of these challenges (7). As a distributed learning framework, 
FL permits the local training of sensitive data at participating 
sites, with only the local model updates being shared with a 
central server to create a global model. This approach ensures 
that local data remain protected and securely stored behind 
firewalls. The ability to protect confidential data and combine 
diverse and geographically distinct datasets has outstanding 
potential for the development of large-scale generative AI 
tools with utility in both biomedical research and healthcare 
settings (8–10).

Although genomic and transcriptomic studies have greatly 
advanced our understanding of cancer, proteomic data will 
play a crucial role in answering many unresolved questions 
about the molecular mechanisms of cancer (11–13) and in 
identifying predictive markers (13). However, as the scale of 
human proteomics research increases, so do the challenges 
related to data privacy. FL provides a promising solution to 
address this but so far has been applied only to nonhuman 
proteomic data (arXiv 2407.15220). A potential high-impact 
application of FL in proteomics would be to develop a feder-
ated global model for international proteomic consortia, as 
will be attempted by π-Hub (the proteomic navigator of the 
human body; ref. 14).

This study addresses these gaps by developing a feder-
ated deep learning (FDL)–based framework, ProCanFDL, 
for the analysis of proteomic data. The dataset, referred to 
here for brevity (and to distinguish it from external data-
sets) as the ProCan Compendium, includes 7,525 human 
biospecimens from 30 cohorts that were preserved and 
stored either by freezing or formalin fixation and paraffin 
embedding in pathology laboratories in multiple countries. 
There were sufficient samples to train the FDL proteomic 
model to recognize 14 cancer histopathologic subtypes; its 
accuracy, tested on a hold-out test set, consistently outper-
formed individual local models and was on par with the 
centralized model. The robustness of ProCanFDL was fur-
ther validated using 10 external proteomic datasets, eight 
of which were generated by a different mass spectrometry 
(MS) technology, covering two additional cancer subtypes, 
to train a global model that can accurately recognize 16 
histopathologic subtypes. These findings highlight the 
potential of FDL to advance global clinical proteomics re-
search by enabling secure, integrative data analysis across 
institutions and jurisdictions.
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Results
ProCan Compendium and Landscape Analysis

We first compiled the ProCan Compendium, quantifying 
proteomes from 7,525 tissue samples, including 5,982 tu-
mors, 1,512 tumor-adjacent normal samples, and 30 benign 
samples from 4,954 individual patients (Supplementary  
Table S1). The data were generated in collaborative research 
projects involving 20 research groups across seven countries 
(Fig. 1A) who provided biospecimens, stored either fresh fro-
zen (FF) or formalin-fixed and paraffin-embedded (FFPE), 
and the associated clinical data. Utilizing a high-throughput  
workflow with seven mass spectrometers, 19,930 data- 
independent acquisition mass spectrometry (DIA-MS) runs 
were used to obtain replicate proteomic data from the 7,525 
samples (11, 15–17). Raw DIA-MS data were processed and 
normalized using DIA-NN with a DIA-NN–generated spec-
tral library, quantifying a total of 9,102 proteins. The num-
ber of proteins quantified per sample, grouped by tissue of 
origin, cancer type, and cancer subtype, is presented in Sup-
plementary Fig. S1A–S1C. These samples encompassed 31 
tissues of origin, 29 cancer histopathology types, and more 
than 65 cancer subtypes, distributed across 30 cohorts (Fig. 1B 
and C; “Methods”). High correlations between replicates of 
individual samples were observed, with a sample-wise me-
dian Pearson’s correlation coefficient (Pearson’s r) of 0.96 and  
moderate correlations between samples of the same cancer 
and tissue of origin (0.84 and 0.81, respectively). Correla-
tions between unmatched samples from the same instrument 
were equivalent to those of random sample pairings (median 
Pearson’s r = 0.75), indicating that there were no instrument- 
specific batch effects (Fig. 1D).

In the ProCan Compendium, cohort 1 serves as the base-
line pan-cancer cohort and its raw data, and the correspond-
ing spectral library are made publicly available alongside 
this study as a resource for researchers in the field of cancer 
proteomics (“Data Availability”). This cohort was acquired 
from the Victorian Cancer Biobank, the Gynaecological  
Oncology Biobank (GynBiobank) at Westmead Hospital, and 
the Children’s Medical Research Institute Legacy sample set 
and consists of 766 tumor samples from 638 patients. Sim-
ilarly to the ProCan Compendium overall, high correlations 
were observed between replicates of individual samples across 
all cancer types in cohort 1 (Supplementary Fig. S2A). Protein 
intensities were visualized in tumor samples using Uniform 
Manifold Approximation and Projection for Dimension Re-
duction (UMAP), revealing distinct clusters for several cancer 
types, including lymphoma and melanoma, with biologically 
related cancer types, such as neuroblastoma and ganglioneu-
roblastoma, forming neighboring clusters, indicating the  
robustness of this pan-cancer dataset (Fig. 1E). For broad 
cancer types, such as adenocarcinoma and carcinoma, the 
UMAP visualization of their subtypes provides a detailed 
representation of the subtypes and clearer insight into the 
diversity within the cancer types (Fig. 1F). Analysis of cancer 
subtype–enriched proteins showed that cohort 1 exhibited a 
pattern consistent with our previous study in cancer cell lines 
(13), with neuroblastoma showing the highest number of en-
riched proteins and quantification rate and lymphoma show-
ing the second highest (Supplementary Fig. S2B and S2C).  

Cohorts 2 to 30 comprise 29 single-cancer cohorts, with a 
total of 5,217 tumor samples from 4,316 patients encom-
passing 42 cancer subtypes, which will be included in sep-
arate publications.

ProCanFDL Overview
The traditional method of machine learning is based 

on local learning (Fig. 2A), in which individual research 
groups independently train models on the data available to 
them. This approach preserves jurisdictional data control 
but limits the ability to generalize findings across diverse 
datasets. Centralized learning (Fig. 2B) improves predic-
tive performance by aggregating data from multiple sites 
into a centralized model; however, it necessitates sharing 
sensitive data, which raises subsequent privacy concerns.  
FL (Fig. 2C) represents an evolution of these methodolo-
gies by enabling the training of a global model across de-
centralized data sources, updating both local and global 
model weights without the need to transfer raw data, thus 
preserving data privacy. FDL specifically refers to the im-
plementation of deep learning techniques within this dis-
tributed setup.

The ProCanFDL framework employs a four-step FDL ap-
proach while maintaining data privacy, enabling collaborative 
research in an international consortium (Fig. 2C; “Methods”). 
In step 1 (initialization and local training), a global model is 
initialized with random weights and distributed to all par-
ticipating local sites. Then, a local instance of a deep learn-
ing model is trained on its private proteomic data at each 
participating site. These models are trained independently, 
without sharing raw data across sites. In step 2 (global 
model aggregation), the trained model parameters are se-
curely transferred to a central server, which aggregates these 
updates using a federated averaging algorithm. This process 
creates a global model reflecting the pooled knowledge from 
all local datasets, without the need for the server to access 
raw data. In step 3 (global model update), the newly aggre-
gated global model is distributed back to all participating 
sites, where it serves as the starting point for the next round 
of local training. Finally, in step 4 (iteration and conver-
gence), this process (steps 1–3) is repeated iteratively, with 
each cycle refining the global model until it converges. The 
resulting model becomes increasingly accurate and repre-
sentative of the combined datasets, encapsulating the col-
lective knowledge.

ProCanFDL on ProCan Compendium
To evaluate and benchmark ProCanFDL, we used pro-

teomic data from the ProCan Compendium as input, train-
ing local, centralized, and ProCanFDL global models to  
assign each sample to its correct cancer subtype. As a proof 
of concept, we focused on 14 cancer subtypes, for each of 
which at least five samples were available in cohort 1 and 
at least 20 samples across cohorts 2 to 30 (Supplementary 
Fig. S3A and S3B). Additionally, only samples with replicate 
correlations greater than 0.9 were included in the analysis 
to ensure data quality and consistency. This filtering step 
resulted in a final subset of 4,558 samples, which was used 
in the subsequent analyses. No cohort-level normalization 

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/doi/10.1158/2159-8290.C

D
-24-1488/3629175/cd-24-1488.pdf by U

niversity of N
ew

 South W
ales user on 21 August 2025



AACRJournals.org

Cai et al.

OF4 | CANCER DISCOVERY XXX 2025

RESEARCH BRIEF

A B

C

D

Cohort 1

Cohorts 2–30

ProCan
Compendium

(N = 7,525)

Pan-cancer 

cohort

E

C
oh

or
t 1

C
oh

or
t 2

C
oh

or
t 3

C
oh

or
t 4

C
oh

or
t 5

C
oh

or
t 6

C
oh

or
t 7

C
oh

or
t 8

C
oh

or
t 9

C
oh

or
t 1

0

C
oh

or
t 1

1

C
oh

or
t 1

2

C
oh

or
t 1

3

C
oh

or
t 1

4

C
oh

or
t 1

5

C
oh

or
t 1

6

C
oh

or
t 1

7

C
oh

or
t 1

8

C
oh

or
t 1

9

C
oh

or
t 2

0

C
oh

or
t 2

1

C
oh

or
t 2

2

C
oh

or
t 2

3

C
oh

or
t 2

4

C
oh

or
t 2

5

C
oh

or
t 2

6

C
oh

or
t 2

7

C
oh

or
t 2

8

C
oh

or
t 2

9

C
oh

or
t 3

0

0

2,000

4,000

6,000

8,000

N
um

be
r 

of
 p

ro
te

in
s

0

200

400

600

800

1,000

1,200

N
um

be
r 

of
 s

am
pl

es

R
ep

lic
at

e

C
an

ce
r 

ty
pe

T
is

su
e 

of
 o

rig
in

R
an

do
m

In
st

ru
m

en
t

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ea

rs
on

's
 r

Basal cell carcinoma
Ganglioneuroblastoma
Germ cell
Glioblastoma
Hepatoblastoma
Lymphoma
Melanoma
Neuroblastoma

Neuroendocrine
Renal cell carcinoma
Retinoblastoma
Rhabdoid tumor
Sarcoma
Squamous
Thyroid papillary
Transitional cell carcinoma
Wilms tumor

Breast carcinoma
Endometrial adenocarcinoma
Colorectal adenocarcinoma
Stomach adenocarcinoma
Small intestine adenocarcinoma
Esophageal adenocarcinoma
Pancreatic ductal adenocarcinoma
Non–small cell lung adenocarcinoma
Hepatocellular carcinoma

Cholangiocarcinoma
Prostate adenocarcinoma
Endometrioid ovary
Mucinous ovary
Clear-cell ovary
High-grade serous ovary
Low-grade serous ovary
Mixed Müllerian ovary
Small cell carcinoma ovary

F

–20

–10

0

10

UMAP1

U
M

A
P

2

0 10 20–10–20
–10

–5

0

5

10

UMAP1

U
M

A
P

2

0 10 20–10–20

Figure 1.  Overview of ProCan Compendium. A, The data were assembled from studies involving 20 collaborating cancer research groups  
across seven countries. B, The circular bar plot shows the sample sizes of the 30 cohorts, with the largest being the pan-cancer cohort (cohort 1).  
C, Bar plot showing the number of quantified proteins; the red dot indicates the number of samples. D, Box plot of mean Pearson’s r for replicates, 
cancer types, tissue of origin, random sets of 10,000 samples, and different MS instruments. Box-and-whisker plots display 1.5× interquartile 
ranges, with centers indicating medians and red diamonds representing mean values. E, UMAP with samples colored by cancer types. Clusters of 
cancer subtypes as per histologic classification are evident. F, UMAP of carcinoma subtypes. Clusters of different subtypes as per primary tissue of 
origin are evident. (A, Created with BioRender.com.)
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was performed. The input data for all machine learning 
models were organized in a data matrix format, in which 
rows represent samples and columns correspond to protein 
abundances. We designated 10% of the patients from each of 
cohorts 2 to 30 as the fixed hold-out test set T. The training 
set consisted of the remaining 90% of data from cohorts 2 to 
30 and all of the data from cohort 1 (Fig. 3A; “Methods”). To 
set up a curated baseline with cohort 1, we applied further 
quality control filtering steps, including histopathologic 
validation (“Methods”). The performance of the models for 
local, centralized, and ProCanFDL was evaluated using the 
same test set, T. Local, centralized, and ProCanFDL models 
employed identical deep learning architectures and hyper-
parameters, optimized through the cross-validation process 
using cohort 1 (Fig. 3B; “Methods”).

Site Simulation

We created four local sites to simulate a FL scenario in 
which data from different institutions cannot be centrally 
combined due to privacy regulations. To obtain statistically 
robust and generalizable results, we ran the simulation 10 
times. In each iteration, site 1 always included only data from 
cohort 1, whereas the other sites received a randomly selected, 
nonrepeating subset of cohorts from the remaining 29. This 
approach generated 10 unbiased cohort distributions across 
sites 2 to 4, ensuring that each site contained approximately 
10 cohorts, representing a meaningful fraction of the 14 cancer 
subtypes (Fig. 3C). In addition, this setup demonstrates how 
different cancer subtypes are distributed across the sites in each 
experiment, highlighting the heterogeneous nature of data dis-
tribution in the FL setup (Supplementary Figs. S4 and S5).
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with other sites or a central server. B, Centralized learning involves collecting data from multiple local sites and aggregating data on a central server where 
a centralized machine learning model is trained. C, In FL, local models are trained on decentralized sites, each residing behind their respective firewalls. 
Only the model parameters, and not the raw data, are shared with a central server. These model parameters are then aggregated to form a global model. 
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(Created with BioRender.com.)
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Local Learning

We trained a local model for cohort 1 data at site 1. The per-
formance of the final model achieved a macro-averaged area 
under the receiver operating characteristic curve (AUROC) of 
0.9805 and an accuracy of 0.847 for classifying the 14 cancer 
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Figure 3.  Experiment setup and model performance. A, The ProCan Compendium consists of cohorts 1–30. Cohort 1, along with 90% of cohorts 2–30, 
forms the training set, whereas the remaining 10% of cohorts 2–30 constitutes the hold-out test set. B, The final local, centralized, and ProCanFDL models 
were evaluated on the same test set. C, Ten experiments for evaluating ProCanFDL. Site 1 always contains cohort 1 (C1), whereas each site from sites 2–4 
contains a random subset of cohorts. D, The performance of each model was benchmarked by macro-averaged AUROC for sites 2–4 and ProCanFDL. The 
AUROCs were annotated as the mean values ± the half-width of the 95% confidence intervals estimated from 10 experiments. E, AUROC of models across 
14 cancer subtypes. The full names of the cancer subtypes can be found in “Methods.” (C, Created with BioRender.com.)

subtypes (Fig. 3D; Supplementary Fig. S6A–S6C; “Methods”). 
We then evaluated the performance of the local models for 
sites 2 to 4 by averaging the results from 10 experiments for 
each site. Site 2 achieved a mean macro-averaged AUROC 
of 0.9502, and sites 3 and 4 recorded values of 0.9680 and 
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0.9522, respectively (Fig. 3D). These scores were lower than 
the mean macro-averaged AUROC of site 1, primarily due 
to the absence of data encompassing all 14 cancer subtypes, 
which was only available at site 1.

Centralized Learning

The centralized learning approach combines all data from 
the training set to train a single centralized model. The cen-
tralized model achieved a macro-averaged AUROC of 0.9999 
(Fig. 3D) and an accuracy of 0.990 (Supplementary Fig. S6A–
S6C), significantly outperforming the local models. These re-
sults demonstrate the expected benefits of data aggregation  
in improving predictive performance, but this approach re-
quires the sharing of data between sites, which may be pre-
vented by local laws and regulations.

ProCanFDL

Using the four-step algorithmic procedure of ProCanFDL, 
we developed a global model for each experiment (“Methods”). 
The performances of the global models were averaged 
across the 10 experiments. The ProCanFDL global model 
achieved a mean macro-averaged AUROC of 0.9992 (Fig. 3D) 
and a mean accuracy of 0.965 (Supplementary Fig. S6A–S6C). 
This represents a substantial improvement over the local 
models for sites 1 to 4 and approximates the performance 
of the centralized model. The AUROC for each cancer sub-
type is detailed in Fig. 3E and Supplementary Table S2. 
We next evaluated the number of true and false predic-
tions across each class generated by the ProCanFDL global 
model with the highest macro-averaged AUROC from the 
10 experiments. The global model achieved 100% sensitiv-
ity (true positive rate) in classifying 10 out of 14 cancer 
subtypes, plus sensitivity exceeding 90% for lung squamous 
carcinoma (Supplementary Fig. S6D), confirming the pre-
dictive power of the model.

Overall, these findings highlight the effectiveness of 
ProCanFDL in improving cancer subtyping performance.  
Notably, the federated approach not only surpasses the per-
formance of local models but also delivers results compara-
ble with the centralized model while providing the critical 
advantage of preserving data privacy, potentially enabling 
large-scale machine learning across sites worldwide.

Generalization and Integration
To rigorously assess the ProCanFDL model’s performance 

on unseen data and provide a clear indication of its general-
izability beyond the ProCan Compendium dataset and the 
DIA-MS method, we included datasets generated in other 
laboratories. We selected datasets encompassing subsets of 65 
cancer subtypes, generated using two distinct MS technolo-
gies [DIA-MS and tandem mass tagging (TMT)]. For DIA-MS, 
we retrieved two cohorts from the Proteomics Identification 
database, one consisting of 40 colorectal adenocarcinoma 
samples from Spain and another with 15 pancreatic ductal 
adenocarcinoma samples from South Africa (18, 19). For 
TMT, we accessed data from the Clinical Proteomic Tumor 
Analysis Consortium (CPTAC) in the USA, which included 
832 tumor samples across eight cohorts (Supplementary  
Table S3; ref. 20).

To ensure consistency across the different datasets,  
protein-wise z-score normalization was applied to both the 
DIA-MS proteomic data (the ProCan Compendium and 
two external DIA-MS cohorts) and the eight TMT cohorts  
separately. The two DIA-MS datasets were concatenated  
sample-wise into a single matrix before normalization, as 
were the eight TMT cohorts. The two normalized matrices 
were then concatenated sample-wise again to produce a final 
input matrix containing a set of 3,837 proteins that were 
quantified in common in these cohorts.

We applied the train–test split across the external data (21). 
In this method, 90% of the external data, comprising the 10 
cohorts, was used to simulate additional local sites 5 and 6, 
whereas the remaining 10% was held out and combined with 
the existing hold-out test set T to form a new, unbiased eval-
uation set T′ (Supplementary Fig. S7A). This test set T′ was 
then used to evaluate and compare the generalizable perfor-
mance of local, centralized, and ProCanFDL global models. 
The two external DIA-MS training cohorts were grouped as 
site 5, and the eight TMT training cohorts from CPTAC were 
grouped as site 6 (Supplementary Fig. S7B). The inclusion of 
these external datasets allowed us to extend the analysis to 
two additional cancer subtypes, high-grade serous ovarian 
carcinoma and clear-cell renal cell carcinoma, for which in-
sufficient samples were available to meet the training cohort 
selection criterion of a minimum of 20 samples per cancer 
subtype in cohorts 2 to 30 of the ProCan Compendium. Thus, 
in the external validation analysis, the total number of cancer 
subtypes analyzed increased from 14 to 16, the total number 
of samples meeting the criteria for analysis in sites 1 to 4 in-
creased by 195, and the number of samples from sites 1 to 4 
included in the holdout test set increased by two.

The predictive performance of these local models was re-
flected by macro-averaged AUROCs of 0.8831 for site 1, 
0.5162 for site 5, and 0.7294 for site 6. Additionally, the 
mean macro-averaged AUROCs over 10 experiments were 
0.9133, 0.9038, and 0.8959 for sites 2, 3, and 4, respectively 
(Fig. 4A). Notably, local models from sites 5 and 6 exhibited 
lower performance across different cancer subtypes compared 
with those from sites 1 to 4, likely due to the limited cover-
age of the cancer subtypes. In contrast, the centralized model, 
trained on aggregated data from all six sites, exhibited sig-
nificantly superior performance, achieving a macro-averaged 
AUROC of 0.9999 across all cancer subtypes (Fig. 4A). By fully 
integrating both internal data (sites 1–4) and external data 
(sites 5 and 6), the centralized model captured a more com-
prehensive range of features and cancer subtypes, enhancing 
its predictive accuracy.

The ProCanFDL global model, trained in a federated man-
ner across sites 1 to 6, showed substantial improvements over 
the local models. The global model achieved a macro-averaged 
AUROC of 0.9987 (Fig. 4A). The predictive performance of 
the global model was similar to that of the centralized model 
while maintaining data privacy. Accuracy measures for local, 
centralized, and ProCanFDL models are provided in Supple-
mentary Fig. S8A–S8C. The AUROC for each cancer subtype 
is detailed in Fig. 4B and Supplementary Table S4. A confu-
sion matrix was generated for the global model with the high-
est macro-averaged AUROC, providing a detailed assessment of 
true and false predictions for each subtype. The model achieved 
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Figure 4.  Generalization, integration, and model explanation. A, Performance of models was benchmarked by the AUROC with 95% confidence 
intervals estimated from the 10 experiments. B, AUROC of models across 16 cancer subtypes. C, Beeswarm plot demonstrating the top 10 proteins 
contributing to the prediction of prostate adenocarcinoma. D, Top 10 proteins contributing to the prediction of colorectal adenocarcinoma. E, Comparison 
of the top upregulated and downregulated pathways as identified by overrepresentation analysis using the top and bottom 200 proteins per SHAP 
value for lung adenocarcinoma between the global and local models. (continued on following page) 
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100% sensitivity for 9 out of 16 cancer subtypes, with particu-
larly high sensitivity rates for subtypes such as pancreatic duc-
tal adenocarcinoma, hepatocellular carcinoma, and head and 
neck squamous cell carcinoma (Supplementary Fig. S8D).

In summary, external validation of ProCanFDL, which also 
integrated datasets from two distinct MS platform types, 
showed that the global model consistently outperformed the 
local models. Importantly, the global model’s performance 
matched that of the centralized model.

Model Explanation
For potential downstream clinical application and interpreta-

tion, understanding the learned relationships and key discrim-
inatory proteins in the ProCanFDL global model is important. 
By leveraging Shapley Additive Explanation (SHAP) values (22), 
we identified the top features contributing to the cancer sub-
type predictions made by the ProCanFDL global model, which 
achieved the highest AUROC when trained with internal data 
(Supplementary Table S5). For example, proteins with utility 
in distinguishing between histologic types of cancer were iden-
tified. Desmoglein 3 (DSG3), a marker of squamous differen-
tiation (23), was identified within the top 10 SHAP values for 
both cutaneous and head and neck squamous cell cancers, with 
SHAP values for this marker contributing negatively to the pre-
diction of the other cancer subtypes (Supplementary Fig. S9A). 
Similarly, markers suggesting epithelial differentiation, such as 
anterior gradient 2 (AGR2), a protein disulfide isomerase fam-
ily member (24), contributed positively to the identification of 
breast, colorectal, and pancreatic adenocarcinomas but neg-
atively to the identification of tumors arising from other cell 
types, including pancreatic neuroendocrine tumors, sarcoma, 
and melanoma (Supplementary Fig. S9B). Finally, additional 
proteins were specific for identifying different tissues, including 
kallikrein-related peptidase 3 (prostate-specific antigen) and  
Purkinje cell protein 4 (PCP4) for prostate adenocarcinoma 
(Fig. 4C), as well as galectin 4 (LGALS4) and cadherin 17 
(CDH17), which are known to be expressed in the intestinal 
epithelium, for colorectal adenocarcinoma (Fig. 4D; ref. 25). 
Cytokeratin 20 (KRT20) featured among the top 10 SHAP  
values for predicting colorectal adenocarcinoma and is 
known to have clinical utility for differentiating this cancer 
subtype from other subtypes of adenocarcinoma (26).

Overrepresentation analysis using the top 200 positive 
and negative SHAP values (Supplementary Fig. S10) for each 
cancer subtype revealed similar patterns with significant en-
richment scores identified for specific or closely related cell 
types. Lung adenocarcinoma showed enrichment for alveolar 
type 2 cells driven by proteins, including napsin A (NAPSA), 
surfactant protein B (SFTPB), and lysophosphatidylcholine  
acyltransferase 1 (LPCAT2) (27). Squamous cancers were 

generally enriched for basal cells driven by proteins ex-
pressed in the squamous epithelium, including cytokeratin 
6A (KRT6A), which has clinical utility in identifying squa-
mous carcinoma (28). Esophageal and colorectal adenocarci-
noma showed enrichment for enterocytes driven by proteins, 
including villin 1 (VIL1), as well as potential antibody–drug 
conjugate (ADC) targets, including carcinoembryonic anti-
gen cell adhesion molecule 5 (CEACAM5; 29) and claudin 3 
(CLDN3; 30, 31). This cell type contributed negatively to the 
identification of several cancer subtypes, including pancre-
atic neuroendocrine tumors, breast carcinoma, and leiomyo-
sarcoma. Of note, in the FDL model, one liposarcoma case 
was misclassified as breast carcinoma due to the presence of 
proteins enriched in adipose tissue (fatty acid binding protein 
4 (FABP4), perilipin 1 (PLIN1), and lipase E (LIPE); ref. 25) 
across both cancer subtypes.

Next, we evaluated biological associations using the top 
and bottom 200 proteins for each cancer subtype across sev-
eral pathway databases (Supplementary Fig. S11). For pancre-
atic ductal adenocarcinoma, we identified pathways related to 
the extracellular matrix. Dense stroma is a key feature and a 
well-recognized barrier to efficient chemotherapeutic delivery 
in this cancer subtype. Pathways contributing positively to 
the identification of hepatocellular carcinoma highlighted a 
propensity for metabolic processes, including histidine and 
choline catabolism, consistent with the presence of hepatic 
tissue (32). We then compared the top identified pathways 
across the global and local models. The degree of overlap 
within the top and bottom 200 proteins, as identified by  
SHAP value for each model, was 221/400 (55%; Supplemen-
tary Fig. S12). Both models provided relevant biological 
information. For example, in both models, the top features 
contributing positively toward the identification of leiomyo-
sarcoma were related to muscle development pathways, con-
sistent with the known cell type of origin (33). Similarly, for 
squamous cancers, pathways relating to keratinization and 
the cornified envelope were identified, consistent with squa-
mous epithelial origin (32). Further, these pathways contrib-
uted negatively to the identification of other cancer subtypes 
across both models, including colorectal cancer (Supple-
mentary Fig. S11). However, there were notable differences 
between the global and local models, particularly for cancer 
subtypes underrepresented in the local model. For lung ad-
enocarcinoma, pathways identified in the local model were 
related to underlying lung tissue, including surfactant me-
tabolism and O-glycan biosynthesis due to the expression of 
multiple mucins, such as MUC5AC and MUC5B (34). In con-
trast, the global model identified pathways potentially more 
relevant to lung cancer biology, including the MET proto- 
oncogene. MET alterations are seen in more than 70% of lung 
adenocarcinoma tumor tissues (35), with multiple preclinical 

Figure 4. (Continued) F, Heatmap showing the normalized enrichment scores for selected Hallmark gene sets across cancer subtypes in the global 
model. Pathways contributing positively toward the identification of each cancer subtype are shown in red, whereas pathways contributing negatively 
toward the identification of each cancer subtype are shown in blue. Plausible biological associations are identified within cancer subtypes. GO, Gene 
Ontology; GSVA, gene set variation analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes. BRCA, breast carcinoma; ccRCC, clear-cell renal cell 
carcinoma; COAD, colorectal adenocarcinoma; CM, cutaneous melanoma; cSCC, cutaneous squamous cell carcinoma; ESAD, esophageal adenocarcinoma; 
HNSCC, head and neck squamous carcinoma; HCC, hepatocellular carcinoma; HGSOC, high-grade serous ovarian carcinoma; LMS, leiomyosarcoma; 
LPS, liposarcoma; LUAD, lung adenocarcinoma; LUSC, lung squamous carcinoma; PancNET, pancreatic neuroendocrine tumor; PDAC, pancreatic ductal 
adenocarcinoma; PRAD, prostate adenocarcinoma.
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and clinical studies currently investigating the role of c-MET–
directed ADCs in this cancer subtype (36–38). Further, we 
identified several pathways relating to glycosphingolipid me-
tabolism, which has been linked to lung cancer growth and 
progression (Fig. 4E; refs. 39–41). For colorectal cancer, the 
local model highlighted nonspecific pathways, including neu-
trophil degranulation and tissue-specific immune response. 
However, the global model highlighted pathways related to 
triglyceride metabolism and peroxisome proliferator–activated 
receptor signaling, which were driven by several fatty acid 
binding and perlipin proteins. FABP4 has been postulated 
as a diagnostic biomarker (42) for colorectal cancer and may 
have prognostic significance.

We then examined the protein features contributing posi-
tively and negatively to the prediction of each cancer subtype 
using the Hallmark gene set collection (Fig. 4F; ref. 43). For pan-
creatic adenocarcinoma and neuroendocrine tumors, we noted 
proteins specific to pancreatic beta cells, including glucagon 
(GCG), somatostatin (SST), and pyruvate kinase L/R (PKLR).  
For breast adenocarcinoma, we noted proteins related to es-
trogen response, including several ETS transcription factors 
(ETS1 and ELF1). We also noted plausible patterns related 
to cancer signaling pathways; for example, Notch signaling 
contributed positively toward the identification of pancreatic 
adenocarcinoma and melanoma (44). Several PI3K pathway 
targets were identified in head and neck squamous cancers, 
including EGFR, which is overexpressed in up to 90% of these 
cancers (45).

Finally, we looked at drug and immune treatment targets, 
including approved and emerging ADC targets (Supplemen-
tary Fig. S13). Again, plausible biological patterns were identi-
fied. For example, ERBB2, which is a well-established prognostic 
and therapeutic biomarker in breast cancer (46), showed a 
strong association with this cancer subtype. Trophoblast cell 
surface antigen 2 (TROP2), which is the target of the ADC 
sacituzumab govitecan, contributed positively to the identi-
fication of breast, head and neck squamous, lung squamous, 
and prostate adenocarcinoma. TROP2 contributed negatively 
to the identification of nonepithelial tumor entities, includ-
ing liposarcoma, leiomyosarcoma, and melanoma, as well as 
colorectal adenocarcinoma, in keeping with published IHC 
and RNA data (47). Several markers involved in immune  
responses, such as signal transducer and activator of tran-
scription 3 (STAT3), intercellular adhesion molecule 1 (ICAM1), 
and CD274 (programmed death-ligand 1 (PD-L1), contrib-
uted positively to the identification of lung adenocarcinoma. 
Of note, PD-L1 expression has clinical utility in predicting the 
response of non–small cell lung cancer to checkpoint inhibi-
tor therapy (48, 49).

Collectively, the proteins and pathways highlighted by 
model explanation analysis demonstrate that the FDL model 
predictions are plausibly related to known biological patterns 
that differ among cancer subtypes.

Discussion
We have developed ProCanFDL, which enables accurate 

cancer subtyping using proteomic data derived from 7,525 
FF and FFPE human biospecimens. The framework leverages 
data from 20 cancer research groups across seven countries 

and is processed in many different pathology laboratories, 
utilizing a privacy-preserving machine learning approach. 
Additionally, we demonstrated that ProCanFDL can integrate 
proteomic data generated via two different MS technologies.

The use of proteomic data in large-scale machine learning 
models has to date been limited by significant challenges, in-
cluding the difficulties of integrating proteomic data from 
different platforms (50, 51). Moreover, data centralization is 
difficult to achieve with sensitive patient data, especially from 
different jurisdictions (7). FL offers a potential solution to 
these issues by allowing collaborative training across multi-
ple sites without the need to transfer raw data. The use of FL 
with patient data, including chest X-rays and scans during the 
COVID-19 pandemic (10), illustrated the rapid gains that can 
be made by privacy-compliant data sharing.

Our model, which simulated FL by distributing data across 
four local sites behind private firewalls, demonstrated the 
feasibility of a real-world scenario whereby datasets are held 
across different institutions. By performing training inde-
pendently at each local site and aggregating model updates 
centrally to form a global model, sensitive patient data can 
remain behind institutional firewalls. Notably, the model  
was enhanced by the incorporation of a distinct type of pro-
teomic technology, TMT. Difficulties with the integration of 
data from different proteomic platforms have been a major 
issue in the aggregation of proteomic data. Therefore, Pro-
CanFDL addresses multiple barriers to significantly scaling 
up proteomic machine learning analyses.

We used the macro-averaged AUROC as the primary 
model evaluation metric in this study. This method pro-
vides a more nuanced view of model performance compared 
with accuracy, especially in multiclass classification tasks in 
which class imbalances may exist. By assigning equal weight-
ing to each class, regardless of sample size, it ensures that 
performance is assessed fairly across all cancer subtypes, 
preventing larger classes from dominating and biasing the 
evaluation metrics.

As with previous FL studies (10), the ProCanFDL global 
model demonstrated a 43% improvement over local models, 
highlighting the benefits of aggregating model parameters 
from local sites to enhance sample diversity and represen-
tation of cancer subtypes. This collaborative approach is 
particularly advantageous for sites with limited samples or 
underrepresented subtypes. By incorporating data from mul-
tiple local sites, the global model could accurately predict 
subtypes that were not present in the local datasets, thereby 
increasing its robustness and generalizability. Additionally, 
the global model achieved comparable evaluation metrics to 
the centralized model while offering the significant advantage 
of eliminating the need for data sharing between local sites. 
These attributes make ProCanFDL a practical and scalable 
solution for collaborative learning in proteomics, especially 
in situations in which data privacy is paramount. This advan-
tage is further underscored when considering the limitations 
of “regulatorily clean” datasets from some local sites, where 
patient selection criteria often result in cohorts that are not 
representative of broader patient populations. This con-
strained representation can lead to reduced local predictive 
performance, yet our global model maintains robust accuracy 
through effective aggregation.
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Unlike most studies that use independent datasets with 
uniform distribution for external validation, we applied a 
train–test split across external datasets to address the inher-
ently nonuniform data distributions obtained from different 
proteomic platforms and to ensure model generalization and 
robustness. This approach allows the model to adapt to varia-
tions in data while maintaining privacy.

By model explanation analysis, we identified several im-
portant biological relationships, including the enrichment 
of proteins specific to cancer subtypes and relevant biolog-
ical pathway information. This suggests that in addition to 
achieving high accuracy, the model can also capture mean-
ingful biological signals. Such model explainability is vital 
for the acceptance of these technologies and their potential 
translation into clinical practice. We identified relevant ADC 
and immune targets, with patterns consistent with previous 
expression data. This highlights the unexplored potential of 
the ProCan Compendium to identify proteins with potential 
downstream prognostic and treatment applications. We an-
ticipate that the application of ProCanFDL will facilitate our 
understanding of cancer biology and enable the use of pro-
teomic data as an adjunct to histopathology in challenging 
diagnostic situations.

Although we demonstrated the utility of ProCanFDL, sev-
eral limitations of the study provide scope for improvement 
and extension. One area for future research is the application 
of this FDL framework to more complex multi-institutional 
setups, in which even greater variations in data types, collec-
tion methods, and processing protocols could introduce ad-
ditional data harmonization challenges. Our implementation 
used a simulated FL scenario in which global normalization 
was possible, but real-world FL deployments would require 
specialized techniques such as federated batch normaliza-
tion (52) to harmonize data across sites without sharing raw 
values. This represents a significant technical challenge, as 
proteomics data normalization typically requires global sta-
tistics that cannot be directly shared in privacy-preserving  
scenarios. Another important direction is addressing the 
challenge of missing data by adapting FL frameworks such as  
FedIMPUTE (53) to handle missing data. Further, this study 
served as a proof of concept focused on cancer subtyping due 
to the availability of relevant annotations. Expanding its ap-
plication to areas such as prognostic biomarker development 
and clinical outcome prediction will require datasets anno-
tated with treatment outcomes, survival data, and other de-
tailed metadata at each participating site.

ProCanFDL enables the development of foundation mod-
els for proteomics. Unlike large language models such as 
ChatGPT or foundation models for digital pathology, which 
benefit from large public datasets or readily available imag-
ing data, the development of large proteomic models faces 
significant challenges due to restricted access to clinically an-
notated datasets. ProCanFDL will enable the gathering and 
utilization of the data needed to train proteomic foundation 
models without compromising data privacy. This federated 
approach is essential for creating the large, diverse datasets 
necessary for training robust and generalizable models. We 
envision that future iterations of ProCanFDL, trained on even 
larger and more diverse datasets through FL, will drive the de-
velopment of pretrained foundation models for proteomics.

Overall, ProCanFDL represents a significant and tangi-
ble step toward applying FL to large-scale cancer proteomic 
datasets generated by different MS technologies. By balanc-
ing the need for robust and accurate model performance 
with data privacy, it fosters a practical and scalable solution 
for proteomic data analysis and collaborative biomedical re-
search. We anticipate that this will create new opportunities 
in cancer research, for example, for the discovery of novel 
treatment targets and predictive biomarkers; accelerate the 
clinical application of proteomic technologies; and extend 
to multiomic data applications beyond proteomics.

Methods
Biospecimen and Data Collection

FF and FFPE samples were obtained from malignant samples  
(tumor and premalignant samples) and nonmalignant tissues  
(benign tumors and tumor-adjacent normal samples). Ethics ap-
proval was obtained for the use of all patient samples. Cohort 1 con-
sisted of FF samples (n = 766 primary tumor samples and n = 494  
tumor-adjacent normal samples) obtained from the Victorian 
Cancer Biobank [2019/ETH02039 (HREC/17/WMEAD/63)], the 
Gynaecological Oncology Biobank (GynBiobank) at Westmead Hos-
pital [2019/ETH02039 (HREC/17/WMEAD/63); 2019/ETH02043 
(LNR/16/WMEAD/291)], and the Children’s Medical Research In-
stitute Legacy sample set [2019/ETH05866 (LNR/17/SCHN/291)]. 
Cohorts 2 to 30 included both FF and FFPE samples obtained from 
the following sites: Gynaecological Oncology Biobank (GynBio-
bank) at Westmead Hospital, Australia [2019/ETH02039 (HREC/17/
WMEAD/63); 2019/ETH02043 (LNR/16/WMEAD/291)]; NCI 
Biobank, USA [2019/ETH02039 (HREC/17/WMEAD/63); 2019/
ETH02075 (LNR/17/WMEAD/249)]; Westmead Institute for Med-
ical Research, Australia [2019/ETH02039 (HREC/17/WMEAD/63); 
2019/ETH10764 (LNR/19/WMEAD/39)]; Germans Trias i Pujol 
Research Institute, Badalona, Spain [2019/ETH06112 (HREC/17/
SCHN/63), PI-17-079]; Royal Prince Alfred Hospital and Cente-
nary Institute, Australia [2019/ETH02039 (HREC/17/WMEAD/63); 
2021/ETH11460]; Royal Prince Alfred Hospital and Woolcock Insti-
tute, Australia [2019/ETH02039 (HREC/17/WMEAD/63); 2020/
ETH01304 (X20-0223)]; St Vincent’s Hospital, Department of Sur-
gery, Sydney, Australia, and Institute of Clinical Sciences, Lund Uni-
versity Hospital, Sweden [2019/ETH02039 (HREC/17/WMEAD/63); 
2021/ETH11590]; Garvan Institute of Medical Research (APGI), 
Australia [2019/ETH02039 (HREC/17/WMEAD/63); X16-0293 
(HREC/11/RPAH/329)]; Garvan Institute of Medical Research [2019/
ETH02039 (HREC/17/WMEAD/63)]; Melanoma Institute Australia 
[2019/ETH02039 (HREC/17/WMEAD/63); X15-0454 (HREC/11/
RPAH/444); X17-0312 (HREC/11/RPAH/32); X15-0311 (HREC/10/
RPAH/530)]; International Sarcoma Kindred Study [2019/
ETH02039 (HREC/17/WMEAD/63); SVH 16/126; PMCC 09/11]; 
University of Manitoba Tissue Biobank, Canada [2019/ETH02039 
(HREC/17/WMEAD/63); HS14811 (H2001-083)]; Australian Breast 
Cancer Tissue Bank [2019/ETH02039 (HREC/17/WMEAD/63); 
2019/ETH02413 (LNR/16/WMEAD/93)]; Nepean Research Bio-
bank, Australia [2019/ETH02039 (HREC/17/WMEAD/63)]; Prin-
cess Alexandra Hospital, Queensland Medical Labs, Mater Hospital, 
Queensland, Australia [2019/ETH02039 (HREC/17/WMEAD/63); 
PR/2022/QMS/8692 (HREC/03/QPAH/197)]; Institute of Cancer Re-
search, Comprehensive Cancer Centre, Medical University of Vienna, 
Austria [2019/ETH02039 (HREC/17/WMEAD/63); 1312/2022]; 
the University of Sydney, Royal North Shore Hospital, NSW Health 
Pathology, Australia [2019/ETH02039 (HREC/17/WMEAD/63); 
2019/ETH08639 (HREC/16/HAWKE/105)]; Jewish General Hos-
pital Breast Cancer Biobank, Montreal, Canada [2019/ETH02039 
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(HREC/17/WMEAD/63); 2023-3377]; Laboratory of Translational 
Oncology, Medical School, University of Crete, and Laboratory of Pa-
thology, University Hospital of Heraklion, Greece [2019/ETH02039 
(HREC/17/WMEAD/63)]; and University of Crete (ref 27/February 
17, 2020. University Hospital ref 9920).

Samples were sectioned as follows: 30-micron curls (at least one) 
for FF tissue and 10- to 20-micron curls (at least one) for FFPE tissue. 
A small proportion of samples underwent tissue punching (using a  
1 mm biopsy punch tool) or macrodissection to enhance the propor-
tion of tumor content.

Specimens were annotated according to the provided histologic 
cancer type and subtype diagnosis. For each sample, an adjacent he-
matoxylin and eosin slide was reviewed by a specialist pathologist 
to confirm that the section received in the proteomic laboratory 
was consistent with the diagnosis and to evaluate the percentage 
of tumor content and necrosis, the extent of lymphocytic infiltra-
tion, and the presence of additional tissue elements. Samples in co-
hort 1 that were not consistent with the provided diagnosis (n = 84)  
and/or contained a significant presence of atypical or normal tissue 
elements (n = 116), had a percentage tumor content <20% (n = 57), 
or had a percentage necrosis >80% (n = 14) were excluded from the 
FDL analyses.

Sample Preparation and Mass Spectrometric Acquisition
All samples were prepared using the Heat ‘n Beat (17) method, and 

MS data were acquired from technical duplicate or triplicate MS runs 
using seven different SCIEX TripleTOF 6600 mass spectrometers.

Spectral Library Generation
To generate the spectral library, 19,930 DIA-MS runs from the 

ProCan Compendium were collected in .wiff file format and pro-
cessed using DIA-NN software. MS/MS spectra were referenced to 
the UniProt human proteome (RRID:SCR_002380). The spectral 
library, containing 193,354 peptides, including retention time pep-
tides and peptides from commonly occurring microbial and viral 
proteins, and corresponding to a total of 15,306 proteins, was used 
to search the entire set of 19,930 sample and quality control runs to 
extract the DIA data.

Data Extraction
Raw DIA-MS data were processed using DIA-NN software, 

implementing retention time–dependent normalization and the 
DIA-NN–generated spectral library. The input parameters are 
given below:

-report-lib-info --out step3-out.tsv --qvalue 0.01 --pg-level 
1 --mass-acc-ms1 40 --mass-acc 40 --window 9 --int-removal  
1 --matrices --temp . --smart-profiling --peak-center

Data were filtered to retain only precursors from proteotypic 
peptides with Global.Q.Value ≤0.01. Protein abundance was cal-
culated using maxLFQ, with default parameters and implemented 
using the DIA-NN R package (https://github.com/vdemichev/ 
diann-rpackage). Data were then log2-transformed.

Proteomic Profiling
All data were processed using custom R/Python scripts (RRID: 

SCR_001905, SCR_008394). For the entire set of samples from the 
ProCan Compendium, the Pearson’s correlation coefficient was 
calculated using the corr function in the Python (RRID: 008394) 
package pandas (v2.0.3) to analyze the technical reproducibility of 
the data. In addition to the correlation among replicates from each 
sample, the mean correlation among samples from different can-
cer types, tissues of origin, MS instruments, and randomly selected 
samples was also calculated. Batch effects and clustering for these 

multicohort data were visualized using the UMAP dimensional-
ity reduction tool. Moreover, the numbers of proteins quantified 
across tissues of origin and cancer types were assessed using box 
plots. The box plots showed the range of proteins quantified in 
each tissue and cancer type, along with the median protein count 
in each class.

To further investigate the proteomic profiles of cancer subtypes 
from various origins, we selected cell type–enriched proteins using 
previously defined thresholds (13). Cell type–enriched proteins were 
defined as proteins quantified in at least 50% of samples from no 
more than one cancer subtype and in ≤35% of samples from all other 
subtypes, considering only subtypes represented by at least 10 sam-
ples. For this, only tumor samples were used.

Preprocessing and Statistical Analysis
For downstream analysis, the sample replicates were merged, 

and a final protein matrix with only tumor samples was used. The 
protein matrix showed an average of 57% missingness per individ-
ual sample. Missing values were imputed with zero. No additional 
normalization or preprocessing was performed. In addition to fil-
tering by replicate correlation, we also filtered samples in cohort 
1 to include only those samples in the FDL analyses that met the 
following criteria: (i) consistent with the histopathologic diagno-
sis, (ii) adequate percentage of tumor content, and (iii) low per-
centage of necrosis (see “Methods” and “Biospecimen and Data 
Collection”).

Preparation of Training and Test Sets
The train–test split of 90% training and 10% testing was per-

formed at the patient level, ensuring that multiple samples from 
the same patient were consistently assigned to the training set. For 
patients assigned to the test set, one random sample was selected to 
simulate real-world conditions.

Hyperparameter Tuning
Hyperparameter tuning was conducted via a threefold cross- 

validation on cohort 1. Based on the cross-validation results, which 
helped identify the optimal architecture for model performance, the 
final architecture includes an input layer, a hidden layer, a Rectified 
Linear Unit (ReLU) activation function, a dropout layer with a prob-
ability of 0.2, and an output layer. The hyperparameters for the train-
ing process were set as follows: a learning rate of 1 × 10−4, a weight 
decay of 1 × 10−4, a hidden dimension size of 256, a batch size of 100, 
and a total of 200 epochs. The Adam optimizer was utilized to update 
the model parameters during training. Default settings were used 
for other hyperparameters that are not specifically mentioned above. 
These hyperparameters were then used for all models in local, central-
ized, and ProCanFDL learning.

ProCanFDL
ProCanFDL is a deep learning–based FL framework with a neural 

network architecture. FDL is conducted through iterative communi-
cation rounds between the central server and the participating local 
sites. The training procedure comprises the following four steps.

Step 1: Initialization and Local Training.  A global model was first 
initialized with random weights and distributed to all participat-
ing local sites. This initial global model served as the starting point 
for the subsequent rounds of FL, ensuring that each site began the 
process with a common starting point. The model architecture was 
consistent across all sites, ensuring uniformity in training and sub-
sequent aggregation. Each participating site locally trained its own 
instance of the deep learning model on its private proteomic data. 
PyTorch (v2.3.0) was utilized as the deep learning framework to 
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implement and train the model. During this phase, model parame-
ters (weights and biases) were optimized using the Adam optimizer. 
To prevent overfitting and enhance generalization, techniques such 
as early stopping and dropout were applied, as detailed in the model’s 
hyperparameter setup. The local models were trained independently, 
capturing unique proteomic signatures relevant to specific cancer 
types and tissues of origin. No raw data were shared between sites, 
ensuring data privacy.

Step 2: Global Model Aggregation.  Following local training, the 
optimized model parameters, specifically the weights and biases, were 
securely transferred from each site to a central server. The server ag-
gregated these updates using the federated averaging algorithm. The 
aggregation involved averaging the weights from all participating 
sites, resulting in a new global model that reflected the pooled knowl-
edge from all local datasets, without the central server accessing any 
raw data. This step allowed the global model to capture the diversity 
of the proteomic data from all sites.

Step 3: Global Model Update.  Once the aggregation was com-
plete, the updated global model parameters were distributed back to 
all participating sites. Each site received the updated global model, 
which served as the starting point for the next round of local training. 
This iterative exchange allowed the model to progressively improve 
and adapt to the heterogeneous data across the sites.

Step 4: Iteration and Convergence.  Steps 1 to 3 were repeated for 
a total of 10 iterations. This fixed number of iterations allowed the 
model to progressively refine its performance by incorporating data 
from all local sites. After the 10 iterations, the global model was 
evaluated on a hold-out test set to assess its generalizability across 
cancer subtypes. All global models in this study converged within 10 
iterations, but the number of iterations may need to be increased for 
other data and tasks.

A pseudocode for this four-step algorithm is described below.

// Initialization
Initialize global_model with random weights
Distribute global_model to all local sites

// Iterative process with 10 iterations (Step 4)
for iteration in range(10):

    // Step 1: Local Training
    for each site in participating_sites:
    �    // Train the local model using the given data and hyper-

parameters
    �    local_model = train_model(global_model, site_data, 

hyperparameters)

        // Optimize the model parameters using the Adam optimizer
    �    local_weights = optimize(local_model, ‘Adam’, hyper-

parameters)
    end

    // Step 2: Global Model Aggregation
    // Send local model parameters (weights) to the central server
    local_weights = send_to_server(local_model_parameters)
    // Central server aggregates all local weights
    global_weights = federated_average(local_weights)

    // Step 3: Global Model Update
    // Update global model with aggregated weights from all sites
    global_model.update(global_weights)
    // Distribute updated global model back to the local sites
    distribute(global_model, participating_sites)
end

// Evaluation of the final global model on the test set
evaluate(global_model, hold_out_test_set)

Evaluation Metrics
The performance of ProCanFDL was measured using the fol-

lowing two metrics. The first was the AUROC, which is calculated 
for multiclass classification using the one-vs-rest approach. For 
each cancer subtype successively, that subtype is treated as the 
positive class, whereas the remaining subtypes are considered to 
be negative, allowing for the calculation of per-class AUROC. To 
more comprehensively evaluate the model’s ability to discriminate 
between multiclass cancer subtypes, the macro-averaged AUROC 
is computed by averaging the AUROC scores across all classes 
without class-size weighting. This macro-average provides an over-
all measure of model performance across all classes, treating each 
class equally regardless of its prevalence in the dataset. The second 
metric is the multiclass accuracy, which measures the proportion 
of correctly classified cancer subtypes among the total instances:

Number of Correct Predictions
Accuracy

Total Number of Predictions
=

This provides a single value that summarizes the model’s perfor-
mance across all cancer subtypes.

Model Explanation Analysis
Feature importance scores from the FDL model were calculated 

using SHAP values with the Python package, SHAP (v0.45.1; ref. 22). 
In the beeswarm plots, features contributing positively to class pre-
diction are shown on the right-hand side, and features contributing 
negatively are shown on the left-hand side. Overrepresentation anal-
ysis using the 200 top and bottom proteins, as indicated by SHAP 
values, was performed using the WebGestalt package (54) using the 
Human Cell Landscape, Reactome, Kyoto Encyclopedia of Genes and 
Genomes, and Gene Ontology: Biological Pathway databases. For all 
overrepresentation analyses, the q-value cutoff was set as 0.05, and the 
input background gene set encompassed all proteins used for build-
ing the relevant global or local models. Feature importance scores 
were also used to evaluate proteins for potential biological relevance 
using the Hallmark gene set collection (23). The ranked SHAP values 
were used to calculate normalized enrichment scores using the gsva 
function from the R GSVA package (v1.50.5; ref. 55) for the Hallmark 
gene sets obtained from the Molecular Signatures Database via the R 
msigdbr package (v7.5.1). Plots were generated using the R Complex-
Heatmap (v2.18.0) and ggplot2 packages (v3.5.1).

Validation by External Datasets
To provide consistency in the underlying model structure and 

training process, all local models, the centralized model, and the 
ProCanFDL global model were trained using the same model archi-
tecture and hyperparameter configuration as previously applied in 
local, centralized, and FL. Z-score normalization was applied using 
the StandardScaler from scikit-learn (v1.4.2; RRID:SCR_002577) to 
both the DIA proteomic data (18, 19) and the eight TMT datasets 
from CPTAC (20) separately. Specifically, we first concatenated the 
sample-wise DIA proteomic data (ProCan Compendium and two  
external DIA datasets) into one matrix and then applied z-score nor-
malization to this matrix. Similarly, the eight TMT cohorts were con-
catenated sample-wise into a single matrix, and z-score normalization 
was applied. Finally, the two normalized matrices were concatenated 
sample-wise to serve as the input for ProCanFDL.

Data Availability
The raw DIA-MS data and processed data of cohort 1 and the cor-

responding spectral library have been deposited in the Proteomics 
Identification database (PRIDE) (RRID:SCR_003411) under the 
dataset identifier PXD056810. The two external DIA-MS datasets 
have the identifiers PXD019549 and PXD007810, respectively. 

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/doi/10.1158/2159-8290.C

D
-24-1488/3629175/cd-24-1488.pdf by U

niversity of N
ew

 South W
ales user on 21 August 2025



AACRJournals.org

Cai et al.

OF14 | CANCER DISCOVERY XXX 2025

RESEARCH BRIEF

Proteomics data for CPTAC datasets are available at the Proteomic 
Data Commons (PDC) at https://proteomic.datacommons.cancer.
gov/pdc/cptac-pancancer. The PDC accession numbers for CPTAC 
datasets are as follows: BRCA, PDC000120; CCRCC, PDC000471; 
COAD, PDC000109; HNSCC, PDC000221; LUAD, PDC000153; 
PDAC, PDC000270; LSCC, PDC000234; and OV, PDC000250. 
The software code is available on GitHub at https://github.com/ 
CMRI-ProCan/ProCanFDL.
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