Diagnostic Potential of ⁶⁸Ga-NeoB PET/CT with Estrogen Receptor— and Progesterone Receptor—Positive Breast Cancer Undergoing Staging or Restaging for Metastatic Disease

Zahra Sabahi^{1,2}, Andrew Nguyen^{1,3}, Keith Wong¹, Sherrington Li¹, Nathan Papa², Elgene Lim³, Rachel F. Dear^{3,4}, Alexander M. Menzies^{5,6}, Frances Boyle^{5,6}, Yoland Antill^{7,8}, Belinda E. Kiely^{5,9}, Benjamin C. Forster^{5,6}, Cindy Mak¹⁰, Diana Adams⁹, Lina Pugliano^{5,6}, Andrew Spillane^{5,6}, Shikha Sharma¹, Adam Hickey¹, Aron Poole¹, Shikha Agrawal², Sobia Khan¹, Narjess Ayati¹⁻³, and Louise Emmett¹⁻³

¹Theranostics and Nuclear Medicine Department, St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia;
²Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; ³St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia; ⁴Department of Medical Oncology, St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia; ⁵Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia; ⁶Mater Hospital, Wollstonecraft, New South Wales, Australia; ⁷Department of Medical Oncology, Peninsula Health, Frankston, Victoria, Australia; ⁸Faculty of Medicine and Health Sciences, Monash University, Clayton, Victoria, Australia; ⁹Department of Medical Oncology, Campbelltown Hospital, Campbelltown, New South Wales, Australia; and ¹⁰Chris O'Brian Lifehouse, Camperdown, New South Wales. Australia

¹⁸F-FDG PET/CT has low sensitivity for estrogen receptor and progesterone receptor (ER/PR)-positive breast cancer. By contrast, gastrinreleasing peptide receptor is overexpressed in ER/PR-positive breast cancer. This study assessed the diagnostic potential of ⁶⁸Ga-NeoB PET/CT in staging or restaging metastatic ER/PR-positive and human epidermal growth factor receptor 2 (HER2)-negative breast cancer. Methods: Patients with ER/PR-positive and HER2-negative breast cancer with clinical suspicion for metastatic disease undergoing staging or restaging were prospectively enrolled. All patients underwent ⁶⁸Ga-NeoB PET/CT, in addition to standard ¹⁸F-FDG PET/CT. ER/PRpositive and HER2-negative status was confirmed in prior biopsy samples (primary or metastatic). Conventional imaging (18F-FDG PET/CT, bone scan, and diagnostic CT) was required within 3 wk of ⁶⁸Ga-NeoB PET/CT. ¹⁸F-FDG PET/CT and ⁶⁸Ga-NeoB PET/CT were assessed visually and quantitatively. Visually, all scans were read masked by 2 readers, with a third reader if results were discordant. Results: Twenty patients were enrolled, all with ER/PR-positive and HER2-negative histopathology. Of these, 75% (15/20) had lobularsubtype cancer, 40% (8/20) had suspected metastatic disease at diagnosis, and 60% (12/20) underwent restaging after systemic therapy. Overall, 75% (15/20) of the ⁶⁸Ga-NeoB PET/CT scans and 65% (13/20) of the ¹⁸F-FDG PET/CT scans were positive on visual assessment. For 50% (10/20) of patients, both scans were positive, and for 10% (2/20) of patients, both scans were negative. In the staging group, 75% (6/8) of patients had positive ⁶⁸Ga-NeoB PET/CT and 50% (4/8) of patients had positive ¹⁸F-FDG PET/CT. At restaging, 75% (9/12) of patients had positive ⁶⁸Ga-NeoB PET/CT and 75% (9/12) of patients had positive ¹⁸F-FDG PET/CT. Sites of positive ⁶⁸Ga-NeoB PET/CT and negative ¹⁸F-FDG PET/CT disease were identified in 50% (4/8) of staging patients and 42% (5/12) of restaging patients, whereas negative ⁶⁸Ga-NeoB PET/CT and positive ¹⁸F-FDG PET/CT disease was found in none of the staging patients but 58% (7/12) of

the restaging cohort. Of these, 71% (5/7) of patients had a reduction in their ER status in the most recent biopsy samples. Quantitatively, the median SUV_{max} was higher for ⁶⁸Ga-NeoB PET/CT (20.5; interquartile range, 5.8–31.3) than for ¹⁸F-FDG PET/CT (7.4; interquartile range, 4.9–9.8). **Conclusion:** ⁶⁸Ga-NeoB PET/CT has diagnostic potential in the staging of ER/PR-positive and HER2-negative breast cancer. Further evaluation is warranted.

Key Words: estrogen receptor; breast cancer; ⁶⁸Ga-NeoB PET/CT; GRPR

J Nucl Med 2025; 66:700–706DOI: 10.2967/jnumed.124.268896

Breast cancer is the second leading cause of cancer-related death in women, and estrogen receptor (ER)-positive breast cancer is the most common presentation (1,2). Although ¹⁸F-FDG PET/CT shows high diagnostic accuracy in ER and progesterone receptor (ER/PR)-negative disease, its sensitivity is lower for women with ER/PR-positive disease (3–5). Better diagnostic tools are required for ER/PR-positive breast cancer. Gastrin-releasing peptide receptor (GRPR) correlates strongly with ER expression in breast cancer (6). NeoB (a bombesin analog) is a 14-amino-acid amphibian homolog of mammalian gastrin-releasing peptide, with a high affinity for GRPR (7), and its analogs have previously demonstrated promising safety and utility in the assessment of breast cancer (8). Preclinical studies suggest promising outcomes with various GRPR antagonists, highlighting their safety profile, but limited exploration has occurred in breast cancer settings (7,9,10). Recent findings suggest GRPR-targeted PET/CT may be more sensitive than ¹⁸F-FDG PET/CT in detecting metastatic breast cancer, particularly the lobular subtype (8,11). The aim of this study is to compare the detection rate of 68Ga-NeoB PET/CT with conventional imaging, including ¹⁸F-FDG PET/CT, in women with ER/PR-positive, human epidermal growth factor receptor 2 (HER2)-negative breast cancer with suspected or confirmed metastatic disease.

Received Oct. 1, 2024; revision accepted Feb. 26, 2025.

For correspondence or reprints, contact Louise Emmet (louise.emmett@svha.org.au).

Published online Mar. 27, 2025.

COPYRIGHT © 2025 by the Society of Nuclear Medicine and Molecular Imaging.

MATERIALS AND METHODS

Study Design

This prospective phase 2 imaging study was undertaken at a single Australian institution (St Vincent's Hospital Sydney). The study protocol was approved by the St Vincent's Hospital institutional review board (HREC/2022/SVH/ETH01188), and patients provided written informed consent. The study was registered with ClinicalTrials.gov (NCT05889728).

Patient Enrollment

Eligible participants had histopathologically confirmed ER/PR-positive, HER2-negative breast cancer and were undergoing either staging for suspected metastatic breast cancer at diagnosis or restaging with known metastatic breast cancer. Participants either had undergone or planned to undergo ¹⁸F-FDG PET/CT, diagnostic CT, and bone scan for clinical purposes within 3 wk. Exclusion criteria include breastfeeding, pregnancy, or the presence of another active malignancy. Clinical data such as age, time since diagnosis, initial pathologic findings including stage, details of previous and ongoing treatments, locations of disease, and histology of subsequently biopsied metastatic lesions were collected as part of the study.

⁶⁸Ga-NeoB Production and Image Acquisition

⁶⁸Ga-NeoB was prepared using cold kits supplied by Advanced Accelerator Applications. A 68 Ge/ 68 Ga generator (IGG100-50 M-NT; Eckert-Ziegler) was eluted with 5.0 mL of 0.1 M hydrogen chloride. The eluent was sterile filtered via a Millex-GV 33-mm, 0.22-μm polyvinylidene fluoride membrane (Merck Millipore) and added to 50 μg of NeoB precursor. The reaction vial was supplemented with 0.5 mL of kit-provided buffer formulation and reacted at 95°C for 10 min to provide 68 Ga-NeoB with specific activity of 10.51 \pm 4.53 MBq/μg (n=23). Thin-layer chromatography analyses were performed using a 1-μL spot on 8 × 2 cm instant thin-layer chromatography silica gel plates developed with 50% v/v methanol in a 1.0 M ammonium acetate mobile phase and provided mean 98.99% radiochemical purity (Advanced Accelerator Applications specifications, free 68 Ga ≤ 5%). High-performance liquid chromatography analyses, adapted from Pretze et al. (12), were performed.

Patients were injected with 200 MBq of intravenous ⁶⁸Ga-NeoB. PET imaging was performed at 1.5–2 h after injection. Image acquisition was performed on a Siemens Biograph Vision 600 64 PET/CT scanner at 2 min per field of view with an imaging direction from vertex to mid-thigh. This was preceded by a noncontrast low-dose CT scan using the following CT parameters: slice thickness of 2 mm with a 2-mm increment, soft-tissue reconstruction kernel at 120 kV and 50 mAs, pitch of 0.8, and a 440 matrix. Emission data were corrected for randoms, scatter, decay, and attenuation.

Imaging Analysis

⁶⁸Ga-NeoB PET/CT and ¹⁸F-FDG PET/CT images were reported by 2 experienced nuclear medicine specialists who were masked to clinical data and prior imaging results. All images were reviewed and reported on Siemens Fusion Viewer (Syngo.via) software. Images were analyzed visually, and lesions were reported based on anatomic site, size, intensity of tracer uptake compared with surrounding tissue, and a 4-point scale of diagnostic certainty (definitely negative; equivocal, probably negative; equivocal, probably positive; and definitely positive). Each detected lesion was scored as definitely negative (0), probably negative (1), probably positive (3), or definitely positive (4). Scores 0 and 1 were considered negative, and scores 3 and 4 were considered positive. A definitely negative score was applied to lesions that were detected on low-dose CT and were consistent with breast cancer yet had no ⁶⁸Ga-NeoB or ¹⁸F-FDG uptake. In cases of discordance between clinical readings, a third masked nuclear medicine

specialist provided a tiebreaker opinion. Images were reported and made available to treating clinicians. Subsequent treatment was documented but left to the treating clinician.

Image Quantitation

Quantitative analysis was conducted to derive total tumor volume, $SUV_{max}, \ and \ SUV_{mean} \ data \ for \ both \ ^{18}F-FDG \ PET/CT \ and \ ^{68}Ga-NeoB \ PET/CT \ (MIM \ Encore; \ MIM \ Software) using an \ SUV_{max} \ and a volume cutoff of 3 and 0.2 mL, respectively.$

Patient Follow-up

Data on investigations, including histologic results of metastatic deposits and further confirmatory imaging, were documented.

Statistical Analysis

Quantitative PET findings were compared at the per-patient level, and all measurable lesions between the 2 PET tracers were compared. Only descriptive statistical analysis was performed because of the small sample size, and all findings were reported as number and percentage or as median and interquartile range (IQR).

RESULTS

Twenty patients were enrolled, all with ER/PR-positive and HER2-negative histopathology at diagnosis. Of these, 75% (15/20) had lobular-subtype cancer and 25% (5/20) had other subtypes on histopathologic analysis. Patient characteristics are listed in Table 1. Of the patients, 40% (8/20) had suspected metastatic disease at diagnosis and 60% (12/20) underwent restaging after systemic therapy. Patients underwent imaging with both ⁶⁸Ga-NeoB PET/CT and ¹⁸F-FDG PET/CT on different days. The median time between ¹⁸F-FDG PET/CT and ⁶⁸Ga-NeoB PET/CT was 3 d (IQR, 2–10.75). The median uptake time for ⁶⁸Ga-NeoB PET/CT was 99 min (IQR, 91–106). Discordant readings occurred for 25% (4/20) of the ⁶⁸Ga-NeoB PET/CT scans and 15% (3/20) of the ¹⁸F-FDG PET/CT scans and needed a tiebreaker opinion from a third reader.

⁶⁸Ga-NeoB PET/CT and ¹⁸F-FDG PET/CT

In total, 75% (15/20) of ⁶⁸Ga-NeoB PET/CT scans and 65% (13/20) of ¹⁸F-FDG PET/CT scans were positive on visual assessment. Sites of ⁶⁸Ga-NeoB-positive disease were identified at the primary site or local recurrence in 27% (4/15), in lymph nodes in 33% (5/15), in bone in 27% (4/15), and in viscera in 53% (8/15) of the scans. In 50% (10/20) of patients, both ⁶⁸Ga-NeoB PET/CT and ¹⁸F-FDG PET/CT were positive, and in 10% (2/20) of patients, both were negative. In addition, 25% (5/20) of patients had disease identified on ⁶⁸Ga-NeoB PET/CT alone and 15% (3/20) of patients had disease identified on ¹⁸F-FDG PET/CT alone. On a region-based analysis, 15% (3/20) of patients had primary site or local recurrence, 30% (6/20) of patients had additional nodal sites, and 30% (6/20) of patients had visceral or skeletal sites detected only on ⁶⁸Ga-NeoB PET/CT (stomach, orbit, bone, peritoneum, esophagus, and rectum), whereas 10% (2/20) of patients had nodal sites and 15% (3/20) of patients had visceral or skeletal sites (bone) detected only on ¹⁸F-FDG PET/CT. Patients with the lobular subtype had a high proportion of positive ⁶⁸Ga-NeoB PET/CT findings, 73% (11/15), versus 60% (9/15) with positive ¹⁸F-FDG PET/CT findings.

Staging

In the staging group, 75% (6/8) of patients had positive ⁶⁸Ga-NeoB PET/CT and 50% (4/8) of patients had positive ¹⁸F-FDG PET/CT. Both patients with negative ⁶⁸Ga-NeoB PET/CT scans also had negative ¹⁸F-FDG PET/CT. All patients in the staging cohort had strongly positive (≥80% intensity) ER expression in

TABLE 1
Patient Characteristics

Characteristic	Data
Age (y)	59 (45–70)
Time from diagnosis (y)	3 (0–8)
Histologic subtype of primary cancer	
Lobular	
Classical	11
Pleomorphic	3
Mixed classical and pleomorphic	1
Ductal	1
Mixed lobular and ductal	2
Other	2
Ki-67 (%)	9 (5–21)
Grade	
2	14
3	4
2 and 3*	1
Not defined	1
ER expression from initial histopathology of primary cancer	90 (80–100
Location of primary cancer	
Unilateral	16
Bilateral	4
Stage at diagnosis	
M0	18
M1	2
Lines of prior therapy	
0	8
1	6
2 or more	6
Current therapy	
Capecitabine, cyclophosphamide, vinorelbine, and/or sacituzumab govitecan	6
Letrozole and/or fulvestrant	6
Abemaciclib, ribociclib, and/or palbociclib	5
Zoledronic acid and/or denosumab	2

Qualitative data are number; continuous data are median followed by range in parentheses.

biopsy samples of primary sites of disease, except for 1 patient who had 40% ER expression (Table 2). This patient was 1 of 2 who had negative ⁶⁸Ga-NeoB PET/CT. Half (4/8) of the staging cohort had sites of disease that were positive on ⁶⁸Ga-NeoB PET/CT and negative on ¹⁸F-FDG PET/CT (Figs. 1 and 2). No patient had sites of negative ⁶⁸Ga-NeoB PET/CT and positive ¹⁸F-FDG PET/CT disease in the staging cohort. The number of lesions detected by ⁶⁸Ga-NeoB PET/CT was 28, versus 17 by ¹⁸F-FDG PET/CT (Table 3).

Restaging

At restaging, 75% (9/12) of patients had positive ⁶⁸Ga-NeoB PET/CT scans and 75% (9/12) of patients had positive ¹⁸F-FDG PET/CT scans at a per patient level. In addition, 42% (5/12) of

patients had positive sites on ⁶⁸Ga-NeoB PET/CT that were negative on ¹⁸F-FDG PET/CT, and 58% (7/12) of the restaging cohort had positive sites on ¹⁸F-FDG PET/CT that were negative on ⁶⁸Ga-NeoB PET/CT (Fig. 3). Of these, 71% (5/7) patients had a reduction in their ER status in the most recent biopsy samples from that of the initial histopathology before endocrine therapy (Table 2). In the restaging cohort, the number of lesions detected by ⁶⁸Ga-NeoB PET/CT was 110, versus 122 by ¹⁸F-FDG PET/CT (Table 3).

Quantification

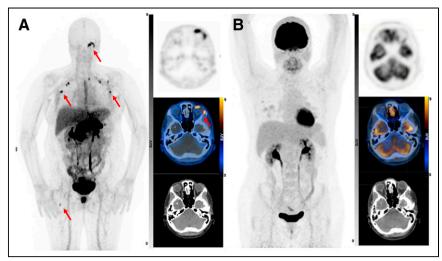

Quantitative analysis for ⁶⁸Ga-NeoB PET/CT showed a median total tumor volume of 55.1 mL (IQR, 5.8–83.5), median SUV_{max}

 TABLE 2

 Molecular Subtypes, ER/PR Status, Scan Findings at Biopsied Site, and Previous Lines of Therapy

		ER/PR in mo	ER/PR in most recent biopsy sample				
Patient no.	Molecular subtype	%	Location or procedure	Positive or negative 18F-FDG PET/CT in biopsied lesion	Positive or negative os Ga-NeoB PET/CT in biopsied lesion	Previous therapy lines	ER/PR in initial primary biopsy sample (%)
Staging cohort							
5 2	Lobular	Not reported	Stomach	ı	+	0	100/20
7	Other	08/06	Axillary lymph node	+	+	0	I
∞	Lobular	100/100	Mastectomy	N	AN	0	I
41	Lobular	40/70	Mastectomy	NA	NA	0	I
17	Lobular	90/30	Biopsy of primary site	I	+	0	I
81	Lobular	Left, 70/10; right, 100/100	Bilateral mastectomy	NA	Y V	0	I
19	Lobular	06/08	Biopsy of primary site	+	+	0	I
20	Lobular	95/20	Biopsy of primary site	+	+	0	I
Restaging cohort							
,-	Lobular	2/0	Stomach	ı	+	2	0/08
က	Other	0/0	Axillary lymph node	I	I	2	08/06
4	Lobular	0/06	Axillary lymph node	I	+	2	65/40
2	Lobular	30/0	Bone marrow	+	I	က	0/06
9	Lobular	10/0	Bone	+	I	-	06/06
O	Left, ductal; right, mixed lobular and ductal	0/0	Bone	+	I	-	Left, 80/80; right, 90/75
10	Mixed lobular and ductal	0/09	Bone	+	+	-	95/95
#	Lobular	10/0	Retroperitoneal lymph node	+	I	-	100/100
12	Ductal	0/0	Axillary lymph node	+	I	-	100/0
13	Lobular	0/06	Peritoneum	+	+	4	30/60
1 5	Lobular	Left, 95/85; right, 100/100	breast	I	+	-	Not reported
16	Lobular	95/15	Chest wall	I	+	4	08/06

- = Most recent biopsy is initial primary biopsy sample, as stated in columns 3 and 4; NA = not applicable.

FIGURE 1. 50-y-old woman with newly diagnosed lobular carcinoma, 100% ER, 100% PR, and HER2-negative histopathology. (A) After bilateral mastectomy and axillary dissections, ⁶⁸Ga-NeoB PET/CT demonstrated multiple bilateral axillary and infraclavicular lymph nodes, left orbital metastases, and right femoral metastases on whole-body maximum-intensity projection (left) and axial (right) images (arrows). (B) Preoperative staging with ¹⁸F-FDG PET/CT showed primary right breast lesion and right axillary lymph nodes on whole-body maximum-intensity projection (left) and axial (right) images.

of 20.5 (IQR, 5.8–31.3), and median SUV $_{\rm mean}$ of 5.6 (IQR, 2.4–7.2). 18 F-FDG PET/CT had a median total tumor volume of 17.8 mL (IQR, 10.9–31.2), median SUV $_{\rm max}$ of 7.4 (IQR, 4.9–9.8), and median SUV $_{\rm mean}$ of 3.4 (IQR, 3.0–3.6).

In the staging cohort, the median SUV $_{\rm max}$ was 16.8 (IQR, 5.1–38.9) for 68 Ga-NeoB PET/CT and 4.3 (IQR, 3.6–5.4) for 18 F-FDG PET/CT. In the restaging cohort, the median SUV $_{\rm max}$ was 20.5 (IQR, 7.3–24.6) for 68 Ga-NeoB PET/CT and 9.6 (IQR, 7.4–10.2) for 18 F-FDG PET/CT.

DISCUSSION

Accurate staging of ER-positive breast cancer, particularly the lobular subtype, with ¹⁸F-FDG PET/CT and conventional imaging

A B

FIGURE 2. 44-y-old woman with newly diagnosed lobular carcinoma, 80% ER, 90% PR, and HER2-negative histopathology. (A) On staging, imaging ⁶⁸Ga-NeoB PET/CT detected multifocal primary right breast lymph nodes, right axillary or subpectoral lymph nodes, and right internal mammary lymph node in whole-body maximum-intensity projection (left) and axial (right) views (arrows). (B) ¹⁸F-FDG PET/CT shows primary lesion, 1 axillary lymph node, and no internal mammary lymph node on whole-body maximum-intensity projection (left) and axial (right) images (arrows).

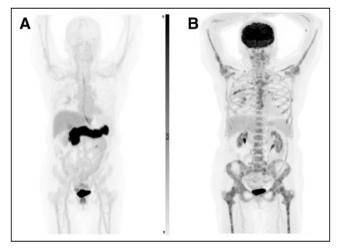
has significant limitations, with ¹⁸F-FDG PET/CT often demonstrating only low metabolic activity and frequently demonstrating negative findings (3,13,14). This study demonstrates that ⁶⁸Ga-NeoB PET/CT has potential in the staging of ER/PR-positive, HER2-negative breast cancer, particularly the lobular subtype, with a higher detection rate than that of ¹⁸F-FDG PET/CT, but there are more heterogeneous findings in restaging after systemic therapy.

The detection rate of ⁶⁸Ga-NeoB PET/CT for sites of metastatic disease appears to be superior to that of ¹⁸F-FDG PET/CT in this study in patients undergoing initial staging, with an increased number of lesions compared with ¹⁸F-FDG PET/CT, particularly in the detection of additional nodal disease, and potentially a higher volume of disease that may affect the initial staging and subsequent management of these patients. ¹⁸F-FDG PET/CT is the standard of care for the staging of metastatic breast cancer (*15*). With low ¹⁸F-FDG PET/CT avidity in

hormone-positive disease, alternative molecular imaging for the staging of breast cancer is a current unmet need (16). 16α -[18 F]-fluoro- 17β -estradiol is a molecular imaging agent with potential in the staging of ER-positive breast cancer. It directly binds to the ER in the nucleus of ER-expressing cells (17). However, recent research directly comparing 16α -[18 F]-fluoro- 17β -estradiol PET to 18 F-FDG PET/CT in a metastatic cohort has not shown its superiority over 18 F-FDG PET/CT (18,19). In a study by Ulaner et al. (20), assessing the 16α -[18 F]-fluoro- 17β -estradiol PET detection rate compared with 18 F-FDG PET/CT in 62 patients undergoing staging for ER-positive breast cancer with correlation to histopathologic findings, 16α -[18 F]-fluoro- 17β -estradiol PET detected 11 of 14 true-positive lesions, versus 12 detected by 18 F-FDG PET/CT. The current study analyzed detection rate rather than sensitivity but had a significantly higher

detection rate than that of ¹⁸F-FDG PET/CT in the staging of ER-positive patients at high risk of metastatic disease, suggesting ⁶⁸Ga-NeoB PET/CT may improve on available molecular imaging options for the staging of ER-positive breast cancer patients.

Lobular-subtype breast cancer is often difficult to detect on conventional imaging, and as a consequence, it is often diagnosed later and hence has a poorer prognosis related to the more advanced stage (21). Most patients demonstrate high levels of ER expression, and it often spreads to visceral sites, including invasion of hollow organs and peritoneal seeding (22,23). Given that lobular carcinomas often have lower metabolic activity on ¹⁸F-FDG PET/CT, the use of GRPRtargeted imaging agents appears to provide a more accurate representation of disease burden, at least at presentation, when the tumor is more homogeneous in ER expression. In this study, 73% of patients with


TABLE 3

Site and Number of Visually Identified Lesions on ⁶⁸Ga-NeoB PET/CT and ¹⁸F-FDG PET/CT in Staging and Restaging Cohorts

	Visually identified lesions (n)	
Site	⁶⁸ Ga-NeoB PET/CT	¹⁸ F-FDG PET/CT
Staging cohort		
Primary breast	4	3
Lymph nodes	23	14
Bone	0	0
Viscera	1	0
Total	28	17
Restaging cohort		
Primary breast	2	1
Lymph nodes	38	42
Bone	24	68
Viscera	46	11
Total	110	122

lobular-subtype breast cancer were positive on ⁶⁸Ga-NeoB PET/CT, with a median SUV_{max} of 20.5. This aligns with the results of a previous study by Wong et al. (8) that demonstrated more avid [⁶⁴Cu]Cu-SAR-BBN uptake than with ¹⁸F-FDG in the lobular subtype of metastatic disease. These results are promising for the future use of GRPR-targeted PET for more accurate staging of lobular-subtype breast cancer, and it warrants further evaluation both for staging and in treatment response.

A higher proportion of patients had ⁶⁸Ga-NeoB-positive and ¹⁸F-FDG-negative disease in the staging setting before systemic endocrine therapy than in the restaging setting after systemic therapy. In this study, 58% of patients undergoing restaging had sites of ¹⁸F-FDG-positive and ⁶⁸Ga-NeoB-negative disease. Most of these patients (71%) had a reduction in their ER expression in

FIGURE 3. 71-y-old woman with recurrent lobular breast cancer in bone marrow. Initial histopathologic examination showed 90% ER, 0% PR, and negative HER2. Recent bone marrow biopsy samples show lobular breast carcinoma, 30% ER, 0% PR, and negative HER2. (A) ⁶⁸Ga-NeoB PET/CT is negative. (B) ¹⁸F-FDG PET/CT shows extensive bone marrow involvement.

biopsy samples of the metastatic sites. This may be partly due to increased heterogeneity in the ER expression of treated metastatic disease. This suggests that a proportion of metastatic deposits have transformation to a low ER expression clone and that ⁶⁸Ga-NeoB PET/CT imaging will have more heterogeneous results, depending on the proportion of clones that have transformed to low ER status. This may have implications for the use of ⁶⁸Ga-NeoB as a theranostic agent in later lines of therapy, with the assumption that heterogeneous expression is important in the development of an effective treatment strategy.

Although the results are promising, this study is limited by its small sample size and the single-center design. Hence, data are presented descriptively, and no statistical test was applied. The high proportion of lobular carcinomas in this study may reflect a selection bias from the referring clinicians, because this subtype often poses diagnostic dilemmas, as mentioned in the discussion. Future research should focus on larger, multicenter trials to validate these findings. The other limitation of the study is the lack of histopathologic correlation for all lesions detected on PET imaging to confirm diagnostic accuracy, because it was not feasible to biopsy all detected sites.

CONCLUSION

⁶⁸Ga-NeoB PET/CT holds promise as a diagnostic tool in ER/PR-positive, HER2-negative breast cancer, particularly in the lobular subtype and in the staging setting. Further evaluation in larger prospective trials is warranted.

DISCLOSURE

The study was partially funded by Novartis. The authors were not paid by the company. No other potential conflict of interest relevant to this article was reported.

KEY POINTS

QUESTION: Is ⁶⁸Ga-NeoB PET/CT a better diagnostic tool than ¹⁸F-FDG PET/CT in hormone-positive breast cancer?

PERTINENT FINDINGS: ⁶⁸Ga-NeoB PET/CT offers a better detection rate than ¹⁸F-FDG PET/CT in the staging of hormone-positive breast cancer in this small-cohort, prospective phase 2 imaging study.

IMPLICATIONS FOR PATIENT CARE: Staging of newly diagnosed hormone-positive breast cancer patients may be more accurate, with a potential effect on patient management.

REFERENCES

- Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48.
- Lu J, Steeg PS, Price JE, et al. Breast cancer metastasis: challenges and opportunities. Cancer Res. 2009;69:4951–4953.
- 3. Basu S, Chen W, Tchou J, et al. Comparison of triple-negative and estrogen receptor-positive/progesterone receptor-positive/HER2-negative breast carcinoma using quantitative fluorine-18 fluorodeoxyglucose/positron emission tomography imaging parameters: a potentially useful method for disease characterization. Cancer. 2008; 112:905, 1000.
- 4. Yoon HJ, Kang KW, Chun IK, et al. Correlation of breast cancer subtypes, based on estrogen receptor, progesterone receptor, and HER2, with functional imaging parameters from ⁶⁸Ga-RGD PET/CT and ¹⁸F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2014;41:1534–1543.

- 5. de Mooij CM, Ploumen RAW, Nelemans PJ, Mottaghy FM, Smidt ML, van Nijnatten TJA. The influence of receptor expression and clinical subtypes on baseline [18F]FDG uptake in breast cancer: systematic review and meta-analysis. *EJNMMI Res.* 2023;13:5.
- Morgat C, MacGrogan G, Brouste V, et al. Expression of gastrin-releasing peptide receptor in breast cancer and its association with pathologic, biologic, and clinical parameters: a study of 1,432 primary tumors. *J Nucl Med.* 2017;58: 1401–1407.
- Roivainen A, Kähkönen E, Luoto P, et al. Plasma pharmacokinetics, whole-body distribution, metabolism, and radiation dosimetry of ⁶⁸Ga bombesin antagonist BAY 86-7548 in healthy men. *J Nucl Med.* 2013;54:867–872.
- Wong K, Sheehan-Dare G, Nguyen A, et al. ⁶⁴Cu-SAR-bombesin PET-CT imaging in the staging of estrogen/progesterone receptor positive, HER2 negative metastatic breast cancer patients: safety, dosimetry and feasibility in a phase I trial. Pharmaceuticals (Basel). 2022;15:772.
- Kahkonen E, Jambor I, Kemppainen J, et al. In vivo imaging of prostate cancer using [⁶⁸Ga]-labeled bombesin analog BAY86-7548. Clin Cancer Res. 2013;19: 5434-5443
- Gruber L, Decristoforo C, Uprimny C, et al. Imaging properties and tumor targeting of ⁶⁸Ga-NeoBOMB1, a gastrin-releasing peptide receptor antagonist, in GIST patients. *Biomedicines*. 2022;10:2899.
- Kersting D, Lazaridis L, Küper A, et al. Gallium-68-NeoB PET in breast cancer patients: first results from a prospective observational trial. *J Nucl Med.* 2024; 65(suppl 2):242084.
- Pretze M, Reffert L, Diehl S, et al. GMP-compliant production of [⁶⁸Ga]Ga-NeoB for positron emission tomography imaging of patients with gastrointestinal stromal tumor. *EJNMMI Radiopharm Chem.* 2021;6:22.
- Hogan MP, Goldman DA, Dashevsky B, et al. Comparison of ¹⁸F-FDG PET/CT for systemic staging of newly diagnosed invasive lobular carcinoma versus invasive ductal carcinoma. *J Nucl Med.* 2015;56:1674–1680.

- 14. Jung NY, Kim SH, Choi BB, Kim SH, Sung MS. Associations between the standardized uptake value of ¹⁸F-FDG PET/CT and the prognostic factors of invasive lobular carcinoma: in comparison with invasive ductal carcinoma. World J Surg Oncol. 2015;13:113
- Hindié E. The EANM-SNMMI guideline on the role of [18F]FDG-PET/CT in breast cancer: important milestones and perspectives for the future. Eur J Nucl Med Mol Imaging. 2024;51:2695–2700.
- Groheux D, Giacchetti S, Moretti JL, et al. Correlation of high ¹⁸F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer. Eur J Nucl Med Mol Imaging. 2011;38:426–435.
- O'Brien SR, Edmonds CE, Lanzo SM, Weeks JK, Mankoff DA, Pantel AR. ¹⁸F-fluoroestradiol: current applications and future directions. *Radiographics*. 2023;43: e220143.
- Liu C, Ma G, Xu X, Song S, Yang Z. Can ¹⁸F-FES PET improve the evaluation of ¹⁸F-FDG PET in patients with metastatic invasive lobular carcinoma? Clin Nucl Med. 2024;49:301–307.
- Kiatkittikul P, Mayurasakorn S, Promteangtrong C, et al. Head-to-head comparison of ¹⁸F-FDG and ¹⁸F-FES PET/CT for initial staging of ER-positive breast cancer patients. Eur J Hybrid Imaging. 2023;7:23.
- Ulaner GA, Silverstein M, Nangia C, et al. ER-targeted PET for initial staging and suspected recurrence in ER-positive breast cancer. *JAMA. Netw Open.* 2024;7: a2423435
- Kitajima K, Fukushima K, Miyoshi Y, et al. Association between ¹⁸F-FDG uptake and molecular subtype of breast cancer. *Eur J Nucl Med Mol Imaging*. 2015;42: 1371–1377
- Inoue M, Nakagomi H, Nakada H, et al. Specific sites of metastases in invasive lobular carcinoma: a retrospective cohort study of metastatic breast cancer. *Breast Cancer*. 2017;24:667–672.
- Pramod N, Nigam A, Basree M, et al. Comprehensive review of molecular mechanisms and clinical features of invasive lobular cancer. Oncologist. 2021;26:e943–e953.