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CDK4/6 inhibitors have become game-changers in the treatment of estrogen
receptor-positive (ER+) breast cancer, and in combination with endocrine therapy
are the standard of care first-line treatment for ER+/HER2-negative advanced
breast cancer. Although CDK4/6 inhibitors prolong survival for these patients,
resistance is inevitable and there is currently no clear standard next-line treatment.
There is an urgent unmet need to dissect themechanismswhich drive intrinsic and
acquired resistance to CDK4/6 inhibitors and endocrine therapy to guide the
subsequent therapeutic decisions. We will review the insights gained from
preclinical studies and clinical cohorts into the diverse mechanisms of CDK4/
6 inhibitor action and resistance, and highlight potential therapeutic strategies in
the context of CDK4/6 inhibitor resistance.
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1 Introduction

Over 70% of breast cancers are estrogen-receptor positive (ER+) and human epidermal
growth factor 2 negative (HER2-) (Howlader et al., 2014). Endocrine therapy (ET) forms the
backbone of systemic treatment for this breast cancer subtype. An estimated 20% of patients
have innate resistance to ET, and others acquire resistance to ET over a period of time
(Anurag et al., 2018). The addition of CDK4/6 inhibitors to ET is efficacious in suppressing
cell proliferation, delaying cancer progression and improving survival, and represents the
current standard of care first-line therapy for advanced ER+/HER2-breast cancer.

The CDK4/6 inhibitors palbociclib, ribociclib, and abemaciclib are each indicated in the
first-line for recurrent unresectable or metastatic ER+/HER2-breast cancer in combination
with an aromatase inhibitor (AI), with concurrent ovarian function suppression for pre-
menopausal women (Gradishar et al., 2022). There is also data to support the use of
combination of a CDK4/6 inhibitor with the selective estrogen receptor degrader (SERD)
fulvestrant, particularly in patients with progression on or early relapse after adjuvant AI
(Gradishar et al., 2022). Abemaciclib is also FDA approved as monotherapy in refractory
advanced disease, having shown single-agent anti-tumor activity in prospective trials
(Dickler et al., 2017; Hamilton E. et al., 2022; Hamilton E. P. et al., 2022). More
recently, the addition of abemaciclib to adjuvant ET has demonstrated invabsive disease-
free survival (IDFS) benefit in high-risk early-stage ER + cancer (Harbeck et al., 2021). The
overall survival data is still immature in this abemaciclib trial, as is data from a similarly large
phase III study of ribociclib added to AIs in high-risk early-stage ER+ cancer (ClinicalTrials.
gov Identifier: NCT03701334).
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Palbociclib, ribociclib and abemaciclib differ in biochemical
kinase activity assays, their effects on cell proliferation, and on
senescence in ER + breast cancer (Fry et al., 2004; Gelbert et al., 2014;
Chen et al., 2016; Hafner et al., 2019). All three inhibit the enzymatic
activity of CDK4/6 at nanomolar levels and have greater selectivity
for CDK4 than CDK6 (Klein et al., 2018; Hafner et al., 2019).
Abemaciclib also has the broadest CDK inhibition activity, with
additional inhibitory activity against other CDKs including CDK1,
2 and 9 (Hafner et al., 2019). At higher concentrations and with
prolonged treatment, abemaciclib has been observed to cause
apoptosis (Torres-Guzman et al., 2017), which is in contrast to
the cytostatic effect of palbociclib and ribociclib (Jost et al., 2021).

There are also different dosing schedules and toxicity profiles
associated with the three agents. They all result in myelosuppression,
particularly neutropenia. The incidence of febrile neutropenia
however is very low (Braal et al., 2021). Abemaciclib has the least
effect on bone marrow suppression and is administered
continuously, while patients treated with palbociclib or ribociclib
require a 7-day break in the 28-day treatment cycle to allow bone
marrow recovery (Chen et al., 2016; Patnaik et al., 2016; Kwapisz,
2017; Klein et al., 2018; Hafner et al., 2019). In contrast, abemaciclib
has a greater frequency of gastrointestinal side effects compared to
palbociclib and ribociclib (Chen et al., 2016; Kwapisz, 2017; Braal
et al., 2021), which may be mediated through CDK9 inhibition
(Braal et al., 2021). Prolongation of the QTc interval has been
observed with ribociclib, and QTc monitoring after starting
treatment is required (Braal et al., 2021).

Other newer CDK4/6 inhibitor agents include dalpiciclib, which
has demonstrated a positive progression free survival (PFS) readout
in combination with fulvestrant in the second- or third-line setting
in the phase III DAWNA-1 trial (Xu et al., 2021), and in
combination with an AI in the first-line setting in the phase III
DAWNA-2 trial (Xu et al., 2022). Lerociclib had favorable signals of
efficacy and tolerability in a dose escalation and expansion trial in
combination with fulvestrant (Bulat et al., 2020).

Patients with metastatic disease will eventually progress on the
combination therapy due to intrinsic or acquired resistance to the ET,
the CDK4/6 inhibitor or both therapies (O’Leary et al., 2018). These
scenarios are not differentiated clinically, and currently there is no
standard next-line treatment. A better understanding of the
mechanisms of CDK4/6 inhibitor and ET resistance and early
detection of predictors for resistance may best inform how to
sequence or combine currently available and emerging therapies,
and potentially identify new drug targets. There is unlikely to be a
one size fits all therapeutic approach, and the identification of predictive
biomarkers is key to tailoring an individualized next-line treatment
plan. Herein we will provide preclinical and clinical perspectives on the
management of advanced ER+/HER2-breast cancer following
progression on combination ET and CDK4/6 inhibitors.

2 Mechanisms of CDK4/6 inhibitor
action

2.1 CDK4/6 inhibitors induce cell cycle arrest

The best characterized mechanism by which CDK4/6 inhibitors
act is the inhibition of retinoblastoma protein (Rb) phosphorylation,

leading to G1 cell cycle arrest in tumor cells (O’Brien et al., 2018).
Palbociclib inhibits growth of both ER+ and ER-negative breast
cancer tumors, but only in the context of Rb expression (Fry et al.,
2004). Palbociclib inhibition of CDK4 activity blocks the
disassembly of the Rb related protein p130 within the DREAM
(DP, Rb-like, E2F And MuvB) complex during cell cycle entry
(Schade et al., 2019) (Figure 1A), and double Rb and
p130 knockout primary fibroblast cells are significantly more
resistant to CDK4/6 inhibition compared to Rb knockout cells.
This demonstrates that CDK4/6 inhibitors act through Rb and p130,
and that a functional Rb axis is required for CDK4/6 inhibitor
activity. The loss of functional Rb is a relatively uncommon
mechanism of intrinsic resistance (O’Leary et al., 2016;
Kumarasamy et al., 2022). While alterations in expression of
DREAM complex members are documented in many cancers
and correlate with cancer prognosis (Duan et al., 2022; Wang
and Liu, 2022), its mechanistic role in CDK4/6 inhibitor
resistance is not defined. CDK4/6 inhibition also induces G1

cytostatic arrest by generating DNA replication stress (Crozier
et al., 2022).

Endogenous CDK inhibitors, including p16, p18, p21 and p27,
regulate the cell cycle in healthy cells in response to DNA damage,
metabolic changes, and cellular stress (Abukhdeir and Park, 2008;
Witkiewicz et al., 2011). However, endogenous CDK inhibitors can
hinder the action of synthetic CDK4/6 inhibitors. In ER + breast
cancer, overexpression of p16 has been associated with CDK4/
6 inhibitor resistance and poor clinical outcome (Palafox et al.,
2022). In addition, p18 binds to the CDK6-CycD complex blocking
the therapeutic action of CDK4/6 inhibitors (palbociclib or
abemaciclib), and conversely CDK4/6 inhibitor sensitivity is
restored by suppressing the binding of p18 to CDK6 (Li et al.,
2022). The endogenous CDK4/6 inhibitory proteins p21 and
p27 prevent phosphorylation by the CDK4-Cyclin D complex,
but also facilitate its stabilization and promote its activation.
When phosphorylated by tyrosine kinases, p27 allosterically
activates the CDK4-Cyclin D complex (Guiley et al., 2019)
(Figure 1A). Interestingly, palbociclib has no inhibitory effect on
the activity of tyrosine phosphorylated p27-CDK4/6-cycD trimer.
Endogenous CDK4/6 inhibitors may also impact the cell cycle
indirectly by interfering with CDK4/6 folding which prevents the
formation of stable complexes comprising cyclin D, CDK4/6 and
p21/p27, thereby releasing p21 to inhibit CDK2 activity and reduce
cell proliferation (Guiley et al., 2019; Pack et al., 2021).

2.2 Non-cell cycle effects of CDK4/
6 inhibitors

When cell proliferation stops in response to contact inhibition,
mitogen withdrawal or cytostatic drugs such as CDK4/6 inhibitors,
cells exit the cell cycle and enter a quiescent or senescent state.
CDK4/6 inhibitors have been shown to induce morphological
changes and increase senescence associated (SA)-β-galactosidase
activity (Thangavel et al., 2011; Torres-Guzman et al., 2017;
Vijayaraghavan et al., 2017; Marinelli et al., 2020; Mayayo-Peralta
et al., 2021). This is reversible upon removal of CDK4/6 inhibition,
as cells re-enter the cell cycle and resume cell proliferation
(Vijayaraghavan et al., 2017), suggesting that CDK4/6 inhibitors
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do not induce irreversible senescence (Figure 1A). Inhibition of the
mTOR signaling complex, mTORC1, during palbociclib exposure
has been shown to prevent the induction of permanent senescence,
while genetic depletion of TSC2, a negative regulator of

mTORC1 during palbociclib exposure resulted in irreversible
senescence (Maskey et al., 2021). In addition, abemaciclib and
palbociclib treatment have been shown to downregulate mTOR
signaling in small cell lung and breast cancer (Naz et al., 2018;

FIGURE 1
(A) The recently proposed mechanisms by which clinical CDK4/6 inhibitors act to block the cell cycle progression to DNA synthesis S phase and G2

phase but cannot inhibit tyrosine kinase phosphorylated p27-CDK4/6-CycD complexes in ER + breast cancer (Guiley et al., 2019; Hafner et al., 2019;
Schade et al., 2019; Pack et al., 2021). Non-cell cycle effects of CDK4/6 inhibition include reversible senescence (Thangavel et al., 2011; Torres-Guzman
et al., 2017; Vijayaraghavan et al., 2017; Marinelli et al., 2020; Maskey et al., 2021; Mayayo-Peralta et al., 2021) and enhanced tumor immunogenicity
(Goel et al., 2017; Peuker et al., 2022) (B) The mechanisms of ET and CDK4/6 inhibitor resistance currently reported in literature are highlighted. Black
arrow shows pathway induction; red line shows pathway inhibition; dotted line indicates lower relative inhibition activity; P, phosphorylation. Images
created with BioRender.com.
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Maskey et al., 2021), providing support that CDK4/6 inhibitors may
induce reversible senescence through downregulating mTOR
signaling.

Enhanced tumor immunogenicity and antitumor immune
responses have also been observed with CDK4/6 inhibition (Goel
et al., 2017; Deng et al., 2018; Schaer et al., 2018) (Figure 1A).
Transcriptomic analysis of serial biopsies from the neoadjuvant
NeoPalAna trial (Clinicaltrials.gov identifier NCT01723774) (Ma
et al., 2017) showed that palbociclib induced tumor cell expression of
endogenous retroviral elements. This results in increased
intracellular levels of double-stranded RNA, increased production
of type III interferons, and greater tumor antigen presentation.
Palbociclib and abemaciclib also suppressed the proliferation of
regulatory T cells and promoted cytotoxic T-cell-mediated clearance
of tumor cells (Goel et al., 2017). Recently, it was also demonstrated
in the RIBECCA trial (Clinicaltrials.gov identifier NCT03096847)
that ribociclib treatment resulted in activation of an already existing
immune response rather than a de novo immune induction in
patients with ER + breast cancer (Peuker et al., 2022).
Combination therapy of CDK4/6 inhibitors with immune
checkpoint blockade has been shown to increase anti-tumor
efficacy in preclinical models (Goel et al., 2017; Deng et al.,
2018) and provides the rationale to evaluate this combination
clinically.

3 Pivotal CDK4/6 inhibitor clinical trials
in ER + breast cancer

Palbociclib, ribociclib and abemaciclib have demonstrated
statistically significant and clinically meaningful PFS benefit when
added to ET in both the first and second-line advanced ER+/HER2-
breast cancer settings (Cristofanilli et al., 2016; Finn et al., 2016;
Sledge et al., 2017; Hortobagyi et al., 2018; Slamon et al., 2018;
Johnston et al., 2019). This has translated to overall survival (OS)
benefit in pivotal trials with a fulvestrant backbone (Sledge et al.,
2020; Slamon et al., 2021; Cristofanilli et al., 2022). In contrast, only
ribociclib in combination with an AI have reported an improvement
in OS (Hortobagyi et al., 2022; Lu et al., 2022). OS benefit was not
seen for first-line palbociclib with letrozole (Finn et al., 2022), and
OS results have yet to be reported for first-line abemaciclib with AI
(Goetz et al., 2022b).

With the success of CDK4/6 inhibitors in the metastatic
setting, they have subsequently been evaluated in the adjuvant
setting for early-stage disease. The phase III monarchE trial
reported that the addition of 2 years of abemaciclib to
adjuvant ET improved invasive disease free (IDFS) survival in
high-risk early-stage ER+/HER2-breast cancer (O’Shaughnessy
et al., 2021). In contrast, the Penelope-B and PALLAS trials failed
to show an IDFS benefit with the addition of 2 years and 1 year of
palbociclib respectively to adjuvant ET (Loibl et al., 2021; Mayer
et al., 2021). Potential contributing factors to the differing results
including differences in study population, duration of CDK4/
6 inhibitors, and pharmacological differences between the agents
(Loibl et al., 2021; Mayer et al., 2021). The results of the
NATALEE trial (Clinicaltrials.gov identifier NCT03701334)
assessing the addition of 3 years of ribociclib to adjuvant ET
are pending.

4 Mechanisms of resistance to
combination CDK4/6 inhibitor and
endocrine therapy

Other than ER, there are no other routinely used clinical
biomarkers used to select patients for combination CDK4/
6 inhibitor and ET. ER loss occurs in a minority of ER +
breast cancer through the course of therapy, is associated with
ET resistance, and remains an important predictor of CDK4/
6 inhibitor and ET efficacy (Finn et al., 2020; Griffiths et al.,
2021).

Mechanisms of CDK4/6 inhibitor resistance that have been
identified are varied and affect cell cycle targets (e.g., Rb1, cyclin
E, CDK2, CDK6, c-Myc and AURKA) and/or activated signaling
targets (e.g., AKT1, FGFR, HER2, EGFR and RAS) (Wander et al.,
2020; Asghar et al., 2022). Only a small percentage of patients are
found to harbor each of the individual genomic aberrations that
drive resistance at baseline, and a clearer picture of acquired
genomic drivers of resistance is emerging with biomarker
analysis, in particular circulating tumor DNA (ctDNA) based
studies of pivotal CDK4/6 inhibitor trials (Asghar et al., 2022). In
some instances, it is also possible that CDK4/6 inhibition delays
the onset of endocrine resistance, and that resistance to
combination is driven primarily by resistance to the ET
backbone (O’Leary et al., 2018). In support of this, ctDNA
biomarker analysis of MONARCH-3 trial found a lower
incidence of ESR1 mutations in the abemaciclib plus AI arm
compared to the AI alone arm (17% vs. 31% respectively) (Goetz
et al., 2020). Here, we list the most well-characterized resistance
mechanisms and acquired genomic aberrations identified to date
(Figure 1B).

4.1 Loss of Rb1

As CDK4/6 inhibitors act to prevent Rb protein inactivation,
mutations resulting in a biallelic loss of function in the RB1 gene
have been identified as drivers of resistance to CDK4/6 inhibitors
(Herrera-Abreu et al., 2016; Bertucci et al., 2019). Cells harboring
a non-functional Rb protein have a dysfunctional proliferative
capacity, continuing through the cell cycle unchecked even in the
presence of CDK4/6 inhibitors. Combined analyses of ctDNA
across three randomized trials of ET plus ribociclib therapy in
patients with advanced breast cancer reported a low baseline
incidence of RB1 mutation in 1.7% of patients (Condorelli et al.,
2018; O’Leary et al., 2018; Kumarasamy et al., 2022). Importantly,
the addition of ribociclib to ET showed poor PFS in patients with
tumors harboring RB1 mutations compared to wildtype
(Kumarasamy et al., 2022). The low occurrence of
RB1 mutation prior to use of CDK4/6 inhibitors compares
with an incidence of 2%–9% in patients at the time of
progression on CDK4/6 inhibitor therapy, suggesting that it is
more commonly an acquired mechanism of resistance (Asghar
et al., 2022). Loss of heterozygosity (LOH) of RB1 is also
significantly associated with intrinsic CDK4/6 inhibitor
resistance, and RB1 mutation is frequently acquired in CDK4/
6 inhibitor treated patients and pre-clinical models with pre-
existing RB1 LOH (Palafox et al., 2022; Safonov et al., 2022).
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4.2 Aberrant cyclin E and CDK2 activity

The circumvention of CDK4/6 inhibition via the alternate
phosphorylation of Rb through an upregulated CDK2-cyclin E
axis represents another mechanism of CDK4/6 inhibitor
resistance (Wang et al., 2007). Amplification of cyclin E1 and
E2 results in an increase in CDK2 activity, and reduced
expression of p27 (Taylor-Harding et al., 2015; Herrera-Abreu
et al., 2016; Yang et al., 2017). There are however discordant
results clinically. Higher levels of CCNE1 mRNA were detected
in resistant compared to sensitive tumors in the abemaciclib ABC-
POP (Palafox et al., 2022) and palbociclib PALOMA-3 trials (Turner
et al., 2019), whereas altered CCNE1 expression was not significantly
associated with an altered response to palbociclib plus letrozole in
the PALOMA-2 trial (Finn et al., 2020).

CDK2mRNA expression has also been shown to be upregulated
in palbociclib resistant ER + cell lines, and palbociclib sensitivity
may be restored by CDK2 knockdown with siRNA, resulting in
tumor suppression, increased apoptosis, and senescence (Pandey
et al., 2020). However, CDK2 amplification has not been reported in
clinical samples (Tadesse et al., 2020).

Aberrant CDK2 activation may also occur independently of
CDK4/6 through mesenchymal-epithelial transition factor (c-MET)
family receptor tyrosine kinase signaling and its downstream
effector focal adhesion kinases (FAK) (Zhang et al., 2019). The
incidence of acquired genomic aberrations in MET was
approximately 8% in the ctDNA analysis of an abemaciclib
monotherapy clinical trial (Goetz et al., 2020). Upregulation of
the PI3K/AKT/mTOR pathway has also been shown to trigger
non-canonical activity of CDK2 by binding to cyclin D, resulting
in cell cycle progression and resistance to CDK4/6 inhibitors
(Herrera-Abreu et al., 2016). These findings have led to interest
in the clinical development of CDK2 inhibitors which will be
described later.

4.3 Upregulation of CDK6 activity

Preclinical studies have demonstrated that CDK6 amplification
may occur in response to prolonged CDK4/6 inhibitor exposure,
and sensitivity can be restored following CDK6 knockdown (Alves
et al., 2016; Yang et al., 2017). This finding was supported by the
analysis of CDK6 protein expression in patients treated with
combined CDK4/6 inhibitor and ET, whereby there was a
significant inverse correlation with PFS (Al-Qasem et al., 2022).
In the same study, the authors noted that a combined score of CDK6,
p-CDK2, and cyclin E1 proteins also predicted a poorer outcome in
this patient subgroup as well as in patients treated with ET alone.

Another mechanism resulting in increased CDK6 activity is
through loss of FAT1, a member of the cadherin superfamily. Loss of
function mutations in FAT1 are present in about 2% of breast
tumors (Li et al., 2018). Inactivation or deletion of FAT1 results in
activation of the Hippo signaling pathway which regulates cell
growth and apoptosis (Steinhardt et al., 2008). Loss of
FAT1 function results in an accumulation of YAP/TAZ
transcription factors, which in turn promote overexpression of
CDK6 and increase the growth inhibitory concentration of
CDK4/6 inhibitors. This effect is most profound in biallelic

FAT1 inactivation, where the PFS on CDK4/6 inhibitors have
been reported at 2.4 months. In contrast, patients with missense
mutations had only a slightly shorter PFS when compared to
wildtype (10.1 vs. 11.3 months) (Li et al., 2018).

Exosomal miRNA-432-5p, a predicator target of SMAD4 and
TGFBR3 can drive acquired CDK4/6 inhibitor resistance,
independent of inherent genetic mutations, by increasing
CDK6 expression, downregulation of SMAD4 and subsequent
reduction in G1/S cell cycle arrest (Cornell et al., 2019). A “drug
holiday” (removing palbociclib for a prolonged period) resulted in
downregulation of CDK6, CCND1, and miRNA-432-5p while
upregulating Rb. Consequently, the resistance of ER + breast
cancer cells to palbociclib was reversed in in vitro and in vivo
preclinical models (Cornell et al., 2019). This may explain why
patients who have progressed on one CDK4/6 inhibitor may later
respond to a different CDK4/6 inhibitor.

4.4 c-Myc alteration

C-Myc is activated by CDK2, 4 and 6, and has been shown to be
upregulated in CDK4/6 inhibitor resistance in preclinical models
(Pandey et al., 2020; Freeman-Cook et al., 2021). In support of this,
ctDNA biomarkers analysis of the MONARCH-3 study demonstrated
an enrichment of acquiredMYC genomic alterations in the abemaciclib
treatment arm (Goetz et al., 2020). c-Myc is also activated downstream
of kinases such as S6K1. Elevated S6K1 have been reported in 9%–14%
of breast cancer patients and studies have demonstrated that elevated
S6K1 drives palbociclib resistance via activation of c-Myc signaling
pathways in preclinical models and clinical breast cancer samples (Mo
et al., 2022).

4.5 Activation of upstream signaling
pathways

A study which compared whole exome sequencing data of
CDK4/6 inhibitor resistant and sensitive breast tumors identified
an enrichment of mutations and amplifications in AKT1, KRAS,
HRAS, NRAS, FGFR2 and HER2 in the resistant samples (Wander
et al., 2020), and similar findings were found in ctDNA biomarker
analysis of the MONARCH-3 trial, whereby acquired mutations in
EGFR and FGFR1 were observed in the abemaciclib arm (Goetz
et al., 2020). Interestingly, PIK3CA mutations were not more
frequently found in the abemaciclib arm. Furthermore, high
phospho-AKT levels in metastases have been shown to be a
biomarker for poor prognosis and correlated with a shorter PFS
in patients who have received CDK4/6 inhibitors and ET (Alves
et al., 2021).

5 Therapeutic strategies following
progression on CDK4/6 inhibitors

Candidate therapeutic strategies following progression on
combination CDK4/6 inhibitor and ET can broadly be divided
into 1) changing to an alternative ET and/or CDK4/6 inhibitor,
2) adding a therapy which inhibits a resistance mechanism of CDK4/
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6 inhibitors, such as inhibitors of CDK2 and PI3K/AKT/mTOR
pathways, and 3) non-endocrine therapy approaches including
chemotherapies and antibody drug conjugates (ADCs). Below, we
summarize the clinical data to date for these strategies.
Supplementary Table S1 and Supplementary Table S2 provide
summaries of completed and ongoing clinical trials respectively
in the post CDK4/6 inhibitor ER+/HER2-population.

5.1 Continuation of CDK4/6 inhibitors
beyond progression

It is currently unclear if there is benefit from continued CDK4/
6 inhibition post-progression on combination ET and CDK4/
6 inhibitor. The phase II MAINTAIN trial enrolled patients with
advanced ER+/HER2-breast cancer who progressed on ET and a
CDK4/6 inhibitor, of whom 84% received prior palbociclib. Patients
were randomized to receive a change in their ET backbone
(exemestane or fulvestrant) plus ribociclib, versus ET
(exemestane or fulvestrant) plus placebo. The median PFS was
superior for the ET plus ribociclib arm compared to ET with
placebo, supporting a switch in both ET and CDK4/6 inhibitor at
progression (5.3 vs. 2.8 months; HR 0.56, p = 0.004) (Kalinsky et al.,
2020; Kalinsky et al., 2022).

The phase II PACE trial similarly enrolled patients with
advanced ER+/HER2-breast cancer who received prior AI and
CDK4/6 inhibitor, of which 91% received palbociclib (Mayer
et al., 2022). Patients were randomized to fulvestrant alone,
fulvestrant plus palbociclib, or fulvestrant plus palbociclib plus
avelumab, a PD-L1 inhibitor. In contrast to the MAINTAIN
study, there was no significant difference in PFS for the
fulvestrant plus palbociclib arm compared to the fulvestrant
alone arm (4.6 vs. 4.8 months respectively), suggesting that a
switch in both ET and CDK4/6 inhibitor may be required to
derive additional benefit. There interestingly was a longer PFS
noted in patients receiving avelumab (8.1 months) which may
warrant further investigation (Mayer et al., 2022). The triplet
combination of atezolizumab, abemaciclib and fulvestrant is one
of the treatment regimens being assessed in the ongoing
MORPHEUS HR + BC (Clinicaltrials.gov identifier
NCT03280563) platform trial.

The phase II BioPER single-arm study enrolled 33 patients with
advanced ER+/HER2-breast cancer who had prior clinical benefit to
but subsequently progressed on palbociclib plus ET (Albanell et al.,
2023). Patients continued palbociclib but had switch of their ET.
Clinical benefit rate was 34% and median PFS was 2.6 months
(Albanell et al., 2023). A composite biomarker signature
incorporating low Rb score (defined as <1% tumor cells with
positive nuclear staining on immunohistochemistry), high cyclin
E1 (defined as ≥10% tumor cells with positive nuclear staining on
immunohistochemistry), and ESR1 mutation was associated with
poorer PFS (Albanell et al., 2023). Other trials evaluating continued
CDK4/6 inhibition are in progress and included in Supplementary
Table S2.

Additional insights can be gained from a retrospective review
of 87 patients who received abemaciclib with or without ET,
following progression on palbociclib with ET, where the median
PFS and OS were 5.3 and 17.2 months respectively (Wander et al.,

2021). These results were remarkably similar to the MONARCH
1 study, where patients with ER+/HER2-breast cancer received
abemaciclib following prior ET and chemotherapy but were
CDK4/6 inhibitor naïve (Dickler et al., 2017). Interestingly,
PFS was longer for patients who received sequential CDK4/
6 inhibitor, compared to patients who had intervening non-
CDK4/6 inhibitor therapy, even after adjusting for number of
prior lines of therapy (Wander et al., 2021).

5.2 Novel endocrine therapies

There are several emerging novel classes of ET, of which the oral
SERDs are the largest group and are reviewed in detail elsewhere
(Downton et al., 2022). To date there have been four completed
randomized trials of oral SERDs in advanced ER+/HER2-breast
cancer, after progression on prior ET with or without a CDK4/
6 inhibitor, and results have been mixed. In both the phase III
EMERALD trial of elacestrant versus physician’s choice ET (Bidard
et al., 2022) and the phase II SERENA-2 trial of camizestrant versus
fulvestrant (Oliveira et al., 2022), oral SERD treatment was associated
with a statistically significant PFS benefit. In contrast, the phase II
AMEERA-3 (Tolaney et al., 2022) and the phase II acelERA trial
(Martin Jimenez et al., 2022) of amcenestrant and giredestrant
respectively were both negative trials with no significant difference
in PFS observed between the oral SERDs and physician’s choice ET. Of
note, these four trials were of oral SERDmonotherapy, EMERALDwas
the only trial that mandated prior CDK4/6 inhibitor, and there was
heterogeneity across trials in the proportion of patients with ESR1
mutant disease. The ESR1 mutant subgroup derived a greater benefit
compared to the ESR1 wildtype subgroups across these trials,
supporting its use as a biomarker to identify ongoing ER
dependence in this pretreated population of patients. Elacestrant is
the first oral SERD to be FDA approved following progression on first
line ET and CDK4/6 inhibitors in January 2023.

Other novel ET agents in development include the proteolysis
targeting chimera (PROTAC) ARV-471 (Hurvitz et al., 2022), the
complete ER antagonist (CERAN) OP-1250 (Patel et al., 2022), the
selective ER covalent antagonists (SERCA) H3B 6545 (Johnston
et al., 2022), the third-generation selective ER modulator (SERM)
lasofoxifene (Goetz et al., 2022a; Damodaran et al., 2022), and the
ShERPA (selective human ER partial agonists) TTC-352 (Dudek
et al., 2020). These agents have demonstrated encouraging anti-
tumor activity in early phase trials which have included patients
treated previously with a CDK4/6 inhibitor (Supplementary
Table S1).

Finally, there is preclinical data to support AR activation as a
therapeutic strategy for ER + breast cancer, including ET and CDK4/
6 inhibitor resistant ER + breast cancer models (Hickey et al., 2021).
AR activation results in an altered distribution of ER chromatin
binding and its interaction with essential co-activators (p300, SRC-
3), resulting in the repression of ER-regulated cell cycle genes
(Panet-Raymond et al., 2000). This has prompted clinical trials
evaluating the selective androgen receptor modulator (SARM)
enobosarm as monotherapy (Clinicaltrials.gov identifier
NCT04869943) and in combination with abemaciclib
(Clinicaltrials.gov identifier NCT05065411) in patients who have
progressed on ET and a CDK4/6 inhibitor.
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5.3 CDK2 inhibitor combinations

In light of the evidence for the role of CDK2 and cyclin E in
CDK4/6 inhibitor resistance, another therapeutic approach would
be to target CDK2 either concurrently with or following the
development of CDK4/6 inhibitor resistance (Tadesse et al.,
2020). Preclinical studies have demonstrated increased efficacy
using the non-selective CDK2 inhibitor dinaciclib concurrently
with palbociclib and letrozole, compared with palbociclib and
letrozole alone (Al-Qasem et al., 2022). More specific
CDK2 inhibitors are currently under evaluation in early phase
trials enrolling patients with solid tumors including ER+/HER2-
breast cancer. These include PF-07104091 (Clinicaltrials.gov
identifiers NCT04553133 and NCT05262400), BLU-222
(Clinicaltrials.gov identifier NCT05252416), and the CDK2/4/
6 inhibitor PF-06873600 (Clinicaltrials.gov identifier
NCT03519178).

5.4 Combination therapies that target the
PI3K/AKT/mTOR pathway

Similar to CDK4/6 inhibitors, small molecule inhibitors of the
PI3K/AKT/mTOR pathway are also FDA approved for use in
endocrine resistant ER+/HER2-breast cancer in combination with
ET. Upregulation of this pathway is associated with ET and CDK4/
6 inhibitor resistance as described earlier. Given the potential benefit of
continued CDK4/6 inhibition and known crosstalk between the CDK4/
6 and PI3K/AKT/mTOR pathways, a number of combinations that
include inhibitors of PI3K/AKT/mTOR are under evaluation in patients
who have progressed on CDK4/6 inhibitors. In addition to therapeutic
efficacy, key considerations include toxicities and the costs of these
multidrug regimens.

The seminal phase III SOLAR-1 trial compared alpelisib plus
fulvestrant versus placebo plus fulvestrant in patients with advanced
ER+/HER2-breast cancer who had relapsed after or progressed on
prior AI. OS was extended by 7.9 months in patients with PIK3CA
mutated cancer, establishing PIK3CA mutation as a predictive
biomarker for alpelisib benefit (Andre et al., 2021). Notably, only
6% of participants in SOLAR-1 received a prior CDK4/6 inhibitor
(Andre et al., 2019). In contrast, the phase II BYLieve trial assessed
alpelisib and fulvestrant following progression on CDK4/
6 inhibitors in patients with a detectable PIK3CA mutation. The
median PFS and OS was lower than those observed in the PIK3CA
mutated cohort of SOLAR-1, suggesting that the benefit of alpelisib
may be attenuated in the setting of CDK4/6 inhibitor resistance
(Rugo et al., 2021). Other studies of alpelisib and fulvestrant
following progression on CDK4/6 inhibitors are ongoing and
include CAPTURE (Australian Trials identifier
ACTRN12619001117101), EPIK-B5 (Clinicaltrials.gov identifier
NCT05038735), and SEQUEL-Breast (NCT05392608).

In vitro studies and analysis of patient samples demonstrate that
activating AKT aberrations are enriched following treatment with
CDK4/6 inhibitors and are associated with CDK4/6 inhibitor
resistance, which contrasts with PI3K alterations (Wander et al.,
2020). The combination of fulvestrant, palbociclib and capiversertib
(an inhibitor of AKT1, AKT2 andAKT3) has been shown to be effective
in suppressing tumor growth in preclinical models that were dually

resistant to ET and CDK4/6 inhibitors (Alves et al., 2021). In the phase
II FAKTION trial, patients with endocrine-resistant advanced ER+/
HER2-breast cancer were randomized to receive fulvestrant and
capiversertib versus fulvestrant and placebo (Jones et al., 2020). This
trial included only CDK4/6 inhibitor naïve patients. PFS and OS were
superior in the capiversertib arm, and the benefits were more
pronounced in patients with evidence of PI3K/AKT/PTEN pathway
alterations (Howell et al., 2022). Extending on this study, the phase III
CAPItello-291 trial evaluated the same treatments and included 69%
patients who had received prior CDK4/6 inhibitor therapy, and
reported a significant improvement in PFS in the arm containing
capiversertib compared with placebo (7.2 vs. 3.6 months; HR 0.60,
p < 0.001) (Turner et al., 2022). The FINER trial (Clinicaltrials.gov
identifier NCT04650581) is currently in progress assessing the
combination of another AKT inhibitor ipatasertib with fulvestrant,
after progression on ET and CDK4/6 inhibitors.

Data for everolimus (mTOR inhibitor) plus exemestane after
progression on CDK4/6 inhibitors is limited to two small real-world
studies. In these studies, median time on treatment or PFS was limited
to a fewmonths (Lupichuk et al., 2019; Cook et al., 2021). The phase I/II
TRINITI trial evaluated the triplet combination of exemestane,
ribociclib, and everolimus, of whom 92% had received prior CDK4/
6 inhibitors. The clinical benefit rate (CBR) at week 24 was 41%, and
median PFS was 5.7 months, an impressive result considering the
heavily pretreated group of patients (Bardia et al., 2021). The phase Ib
B2151009 trial assessed the pan-PI3K/mTOR inhibitor gedatolisib in
combination with palbociclib and ET. Patients had received 0–3 prior
lines of therapy for metastatic ER+/HER2-breast cancer, and 12-month
PFS in this trial was 53% in patients who had received prior CDK4/
6 inhibitor therapy (Wesolowski et al., 2022). CAPItello-292
(Clinicaltrials.gov identifier NCT04862663) and VIKTORIA-1
(Clinicaltrials.gov identifier NCT05501886) are other ongoing trials
of triplet endocrine, CDK4/6 inhibitor and PI3K/AKT/mTOR pathway
inhibitor therapy.

5.5 Non-endocrine therapy approaches

Chemotherapy remains an option for patients who have
progressed on ËT alone and in combination with CDK4/
6 inhibitors. It is generally held in reserve for rapidly progressive
or endocrine-refractory disease. The development of new classes of
ET is aimed at delaying the switch to chemotherapy, but such a
strategy is only effective in patients whose tumors retain some
dependence on ER signaling.

An emerging class of therapies used in ER + breast cancer is
antibody drug conjugates (ADCs). These are complex molecules
consisting of tumor-antigen targeting antibodies linked to a potent
chemotherapy payload and have immune-mediated and cytotoxic
properties. In addition to direct cytotoxic effects, ADCs with a
cleavable linker can also exert bystander killing effects on
neighboring cells which may or may not express the target
antigen (Staudacher and Brown, 2017).

Trastuzumab deruxtecan is a HER2-directed ADC, consisting of
trastuzumab, a humanized anti-HER2 antibody linked to a
topoisomerase I inhibitor payload, approved for use in advanced
HER2-positive breast cancer (Cortes et al., 2022). It was more
recently evaluated in and demonstrated benefit also against tumors
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with HER2-low expression (defined as immunohistochemistry 1 + or
2+ with a negative in situ hybridization result) (Modi et al., 2020). In the
pivotal phase III DESTINY-Breast04 trial, patients were randomized to
receive trastuzumab deruxtecan or physician’s choice chemotherapy.
89% of patients had ER + disease, and of which, 70% had received prior
CDK4/6 inhibitor therapy. In the ER + subgroup, the trastuzumab
deruxtecan arm had an improved PFS (10.1 vs. 5.4 months; HR 0.51,
p < 0.001) and OS (23.9 vs. 17.5 months; HR 0.64, p = 0.003) compared
to the treatment of physician’s choice arm, and the benefit was similar
for those who had received and not received prior CDK4/6 inhibitors
(Modi et al., 2022).

Sacituzumab govitecan is an ADC, which is directed against
trophoblast cell-surface antigen 2 (Trop-2) and is linked to a
topoisomerase I inhibitor SN-38, cytotoxic payload (Syed, 2020).
Trop-2 is a transmembrane glycoprotein which is overexpressed in
many epithelial tumors, including >90% of ER+/HER2-breast cancers
(Vidula et al., 2022). In the phase III TROPiCS-02 trial, patients with
heavily pretreated (median of three prior systemic therapies) ER+/
HER2-breast cancer and who received prior CDK4/6 inhibitors were
randomized to sacituzumab govitecan or physician’s choice
chemotherapy. The median PFS was 5.5 months for sacituzumab
govitecan versus 4.0 months for chemotherapy (HR 0.66; p =
0.0003), and benefit was independent of Trop-2 tumor status (Rugo
H. et al., 2022; Rugo et al., 2022b; Rugo et al., 2022c). The outcomes of
DESTINY-Breast04 and TROPiCS-02 have established a clinical role
for ADCs following progression on CDK4/6 inhibitors.

A third ADC datopotamab deruxtecan, which also acts against
Trop-2 and uses the same payload as trastuzumab deruxtecan has had
encouraging results in a phase I trial that included heavily pretreated
ER+/HER2-breast cancer (Meric-Bernstam et al., 2022), and is under
further assessment in the phase III TROPION-Breast-01 trial
(Clinicaltrials.gov identifier NCT05104866).

6 Conclusion

The combination of ET with a CDK4/6 inhibitor is the standard of
care first line treatment for advanced ER+/HER2-breast cancer, and
while practice changing and improving survival outcomes, patients
eventually develop progressive disease due to intrinsic or acquired drug
resistance. There are various systemic treatment options post-
progression, but it is not currently clear how these are best
sequenced. This represents a current clinical knowledge gap, and
defining a biomarker led approach in this setting is critical. Patients
whose tumors retain dependence of ER signaling can benefit from
changing the endocrine therapy backbone, and where the mechanisms
of resistance to combination ET andCDK4/6 inhibitor can be identified
and targeted, this may represent a rationale strategy to delay the start of
chemotherapy.

Current targeted therapy options include PI3K and PARP inhibitors
in the setting of PIK3CA and BRCA1/2mutations respectively (Burstein
et al., 2021), but their use is limited by lack of universal access to genomic
testing and treatment side effect profiles. There is an unmet need for
efficacious and better tolerated therapies and this review has discussed
the preclinical backdrop and status of continued CDK4/6 inhibition,
addition of CDK2 inhibition, newer ET backbones, PI3K/AKT/mTOR
inhibitors, AR agonists, and ADCs as strategies in the post-CDK4/
6 inhibitor ER+/HER2-treatment landscape. The novel approach

delivering chemotherapy to tumors through ADCs represent an
exciting strategy which has been shown to be effective. The novel
approach of delivering chemotherapy to tumors through ADCs
represent an exciting strategy which has been shown to be effective.

There is intra- and inter-patient heterogeneity in breast cancer
tumor biology, mechanisms of drug resistance, and tumor genomic
profiles. Identification of biomarkers relevant to both intrinsic and
acquired resistance may inform how to personalize the treatment
approach for ER+/HER2-breast cancer patients. The major
challenge is to accrue patients of each unique resistance subset
for future clinical trials to test new combinations in the post-
combination ET plus CDK4/6 inhibitor setting.
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